scholarly journals A Refined Simple First-Order Shear Deformation Theory for Static Bending and Free Vibration Analysis of Advanced Composite Plates

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2385 ◽  
Author(s):  
Hoang Nam Nguyen ◽  
Tran Thi Hong ◽  
Pham Van Vinh ◽  
Nguyen Dinh Quang ◽  
Do Van Thom

A refined simple first-order shear deformation theory is developed to investigate the static bending and free vibration of advanced composite plates such as functionally graded plates. By introducing the new distribution shape function, the transverse shear strain and shear stress have a parabolic distribution across the thickness of the plates, and they equal zero at the surfaces of the plates. Hence, the new refined theory needs no shear correction factor. The Navier solution is applied to investigate the static bending and free vibration of simply supported advanced composite plates. The proposed theory shows an improvement in calculating the deflections and frequencies of advanced composite plates. The formulation and transformation of the present theory are as simple as the simple first-order shear deformation. The comparisons of deflection, axial stresses, transverse shear stresses, and frequencies of the plates obtained by the proposed theory with published results of different theories are carried out to show the efficiency and accuracy of the new theory. In addition, some discussions on the influence of various parameters such as the power-law index, the slenderness ratio, and the aspect ratio are carried out, which are useful for the design and testing of advanced composite structures.

2020 ◽  
Vol 29 ◽  
pp. 096369351987573 ◽  
Author(s):  
Yamna Belkhodja ◽  
Djamel Ouinas ◽  
Fatima Zohra Zaoui ◽  
Hamida Fekirini

Two assumptions have been made based on by this proposed theory, which come from recently developed exponential–trigonometric shape function for transverse shear deformation effect and a simple higher order shear deformation theory for plate, based on a constraint between two rotational displacements of axis parallel to the plate midplane, about the axes x, y Cartesian coordinates system, which caused fewer unknown number. For the application of this method, a displacement field extended as only bending membrane for transverse displacement is used, a governing equations of motion as a result are determined according to Hamilton’s principle, and simplified using Navier analytical solutions, as well as the transverse shear stresses effect that satisfied the stress-free boundary conditions on the simply supported plate free faces as a parabolic variation along the thickness are taken into account. A functionally graded materials plates are chosen for the parametric study, where the plates are functionally graded continuously in materials through the plate thickness as a function of power law or exponential form. The aim of this study is to analyze the bending, free vibration as well as the buckling mechanical behaviors, where the results are more focused on the investigation of different parameters such as the volume fraction index, geometric ratios, frequency modes, in-plane compressive load parameters and material properties effects on the deflection, stresses, natural frequencies, and critical buckling load, which are validated in terms of accuracy and efficiency with other plate theories results found in the literature.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050031 ◽  
Author(s):  
Mehmet Dorduncu ◽  
Kadir Kaya ◽  
Omer Faruk Ergin

A nonlocal Peridynamic Differential Operator (PDDO) is presented for static analysis of laminated composite plates based on the First-order Shear Deformation Theory (FSDT). The equilibrium equations and boundary conditions of the FSDT were derived from the principle of virtual work. The local spatial derivatives in these equations were replaced with their nonlocal PD forms. The continuous transverse shear stresses were achieved by integrating the stress equilibrium equations through the thickness of the plate. This approach was validated against an existing analytical solution by considering a simply supported laminated composite plate under uniformly distributed sinusoidal load for different aspect ratios. The performance of this formulation was investigated by comparing through-the-thickness stress variations against the analytical solutions.


2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Fuzhen Pang ◽  
Cong Gao ◽  
Jie Cui ◽  
Yi Ren ◽  
Haichao Li ◽  
...  

This paper describes a unified solution to investigate free vibration solutions of functionally graded (FG) spherical shell with general boundary restraints. The analytical model is established based on the first-order shear deformation theory, and the material varies uniformly along the thickness of FG spherical shell which is divided into several sections along the meridian direction. The displacement functions along circumferential and axial direction are, respectively, composed by Fourier series and Jacobi polynomial regardless of boundary restraints. The boundary restraints of FG spherical shell can be easily simulated according to penalty method of spring stiffness technique, and the vibration solutions are obtained by Rayleigh–Ritz method. To verify the reliability and accuracy of the present solutions, the convergence and numerical verification have been conducted about different boundary parameters, Jacobi parameter, etc. The results obtained by the present method closely agree with those obtained from the published literatures, experiments, and finite element method (FEM). The impacts of geometric dimensions and boundary conditions on the vibration characteristics of FG spherical shell structure are also presented.


Sign in / Sign up

Export Citation Format

Share Document