Unsteady Unidirectional Flow of Bingham Fluid Through the Parallel Microgap Plates with Wall Slip and Given Inlet Volume Flow Rate Variations

2013 ◽  
Vol 29 (2) ◽  
pp. 355-362
Author(s):  
Y.W. Lin ◽  
C.-I. Chen ◽  
C.-K. Chen

AbstractIn this paper, Laplace transformation method is used to solve the velocity profile and pressure gradient of the unsteady unidirectional flow of Bingham fluid. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. Due to the rarefaction, the wall slip condition is existed; therefore, the complexity of solution is also increased. In order to understand the flow behavior of Bingham fluid, there are two basic flow situations are solved. One is a suddenly started flow and the other is constant acceleration flow. Furthermore, linear acceleration and oscillatory flow are also considered. The result indicates when the yield stress τ0 is zero; the solution of the problem reduces to Newtonian fluid.

2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Cha'o-Kuang Chen ◽  
Hsin-Yi Lai ◽  
Wei-Fan Chen

The second-grade flows through a microtube with wall slip are solved by Laplace transform technique. The effects of rarefaction and elastic coefficient are considered with an unsteady flow through a microtube for a given but arbitrary inlet volume flow rate with time. Five cases of inlet volume flow rate are as follows: (1) trapezoidal piston motion, (2) constant acceleration, (3) impulsively started flow, (4) impulsively blocked fully developed flow, and (5) oscillatory flow. The results obtained are compared to those solutions under no-slip and slip condition.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
Chun-I Chen ◽  
Cha’o-Kuang Chen ◽  
Heng-Ju Lin

This study examines the effects of rarefaction of an unsteady flow through a microtube for a given but arbitrary inlet volume flow rate. Four cases of inlet volume flow rate proposed by Das and Arakeri (2000, ASME J. Appl. Mech., 67, pp. 274–281) are as follows: (1) trapezoidal piston motion, (2) constant acceleration, (3) impulsively started flow, and (4) impulsively blocked fully developed flow. During the analysis process, the Knudsen number (Kn) is used to represent the degree of rarefaction. The analytical results are presented graphically and compared to the results for a continuum under a no-slip condition. The effect of wall-slip became significant with the increasing degrees of rarefaction. The velocity in the boundary layer increased, whereas the velocity in the potential core of the microtube decreased, under the same condition. The influence of the rarefaction for the pressure gradient varied for the four cases.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document