scholarly journals Effect of an orientation-dependent non-linear grain fluidity on bulk directional enhancement factors

2021 ◽  
pp. 1-7
Author(s):  
Nicholas M. Rathmann ◽  
Christine S. Hvidberg ◽  
Aslak Grinsted ◽  
David A. Lilien ◽  
Dorthe Dahl-Jensen

Abstract Bulk directional enhancement factors are determined for axisymmetric (girdle and single-maximum) orientation fabrics using a transversely isotropic grain rheology with an orientation-dependent non-linear grain fluidity. Compared to grain fluidities that are simplified as orientation independent, we find that bulk strain-rate enhancements for intermediate-to-strong axisymmetric fabrics can be up to a factor of ten larger, assuming stress homogenization over the polycrystal scale. Our work thus extends previous results based on simple basal slip (Schmid) grain rheologies to the transversely isotropic rheology, which has implications for large-scale anisotropic ice-flow modelling that relies on a transversely isotropic grain rheology. In order to derive bulk enhancement factors for arbitrary evolving fabrics, we expand the c-axis distribution in terms of a spherical harmonic series, which allows the rheology-required structure tensors through order eight to easily be calculated and provides an alternative to current structure-tensor-based modelling.

2010 ◽  
Vol 56 (199) ◽  
pp. 805-812 ◽  
Author(s):  
Ying Ma ◽  
Olivier Gagliardini ◽  
Catherine Ritz ◽  
Fabien Gillet-Chaulet ◽  
Gaël Durand ◽  
...  

AbstractPolar ice is known to be one of the most anisotropic natural materials. For a given fabric the polycrystal viscous response is strongly dependent on the actual state of stress and strain rate. Within an ice sheet, grounded-ice parts and ice shelves have completely different stress regimes, so one should expect completely different impacts of ice anisotropy on the flow. The aim of this work is to quantify, through the concept of enhancement factors, the influence of ice anisotropy on the flow of grounded ice and ice shelves. For this purpose, a full-Stokes anisotropic marine ice-sheet flowline model is used to compare isotropic and anisotropic diagnostic velocity fields on a fixed geometry. From these full-Stokes results, we propose a definition of enhancement factors for grounded ice and ice shelves, coherent with the asymptotic models used for these regions. We then estimate realistic values for the enhancement factors induced by ice anisotropy for grounded ice and ice shelves.


2011 ◽  
Vol 418 (1) ◽  
pp. 214-229 ◽  
Author(s):  
Marco Baldi ◽  
Valeria Pettorino ◽  
Luca Amendola ◽  
Christof Wetterich

2013 ◽  
Vol 54 (64) ◽  
pp. 105-114 ◽  
Author(s):  
S.R. Harland ◽  
J.-M. Kendall ◽  
G.W. Stuart ◽  
G.E. Lloyd ◽  
A.F. Baird ◽  
...  

Abstract Ice streams provide major drainage pathways for the Antarctic ice sheet. The stress distribution and style of flow in such ice streams produce elastic and rheological anisotropy, which informs ice-flow modelling as to how ice masses respond to external changes such as global warming. Here we analyse elastic anisotropy in Rutford Ice Stream, West Antarctica, using observations of shear-wave splitting from three-component icequake seismograms to characterize ice deformation via crystal-preferred orientation. Over 110 high-quality measurements are made on 41 events recorded at five stations deployed temporarily near the ice-stream grounding line. To the best of our knowledge, this is the first well-documented observation of shear-wave splitting from Antarctic icequakes. The magnitude of the splitting ranges from 2 to 80 ms and suggests a maximum of 6% shear-wave splitting. The fast shear-wave polarization direction is roughly perpendicular to ice-flow direction. We consider three mechanisms for ice anisotropy: a cluster model (vertical transversely isotropic (VTI) model); a girdle model (horizontal transversely isotropic (HTI) model); and crack-induced anisotropy (HTI model). Based on the data, we can rule out a VTI mechanism as the sole cause of anisotropy – an HTI component is needed, which may be due to ice crystal a-axis alignment in the direction of flow or the alignment of cracks or ice films in the plane perpendicular to the flow direction. The results suggest a combination of mechanisms may be at play, which represent vertical variations in the symmetry of ice crystal anisotropy in an ice stream, as predicted by ice fabric models.


2001 ◽  
Vol 7 (5) ◽  
pp. 345-351
Author(s):  
Rasa Kazakevičiūtė-Makovska

Membranai, pagamintai iš medžiagos, kurios fizinės savybės aprašomos deformacijos energijos funkcija W tūrio vienetui, deformacijos energijos funkcija Φ membranos vidurinio paviršiaus ploto vienetui gaunama integruojant funkciją W pagal membranos storį. (Nagrinėjama deformacijos energijos funkcija W neturi nustatytų apribojimų ir yra leidžiamos bet kokio dydžio deformacijos.) Funkcijos Φ tiksli išraiška yra išvesta skersai izotropinei medžiagai, kai izotropijos ašis sutampa su membranos nedeformuoto vidurinio paviršiaus normale. Parodoma, kad skersai izotropinei medžiagai gauta dvimatė membranos darbą apibūdinanti funkcija yra izotropinė ir išsamiai ištirta gautų fizinių priklausomybių struktūra. Tokios fizinės priklausomybės yra išvestos keturiems kontinuumo mechanikoje dažnai nagrinėjamų medžiagų tipams.


2002 ◽  
Author(s):  
BART G VAN BLOEMEN WAANDERS ◽  
ROSCOE A BARTLETT ◽  
KEVIN R LONG ◽  
PAUL T BOGGS ◽  
ANDREW G SALINGER

Sign in / Sign up

Export Citation Format

Share Document