scholarly journals The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line position

2021 ◽  
pp. 1-13
Author(s):  
James R. Jordan ◽  
G. Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris R. Stokes ◽  
Bertie W. J. Miles ◽  
...  

Abstract The Wilkes Subglacial Basin in East Antarctica contains ice equivalent to 3–4 m of global mean sea level rise and is primarily drained by Cook Glacier. Of concern is that recent observations (since the 1970s) show an acceleration in ice speed over the grounding line of both the Eastern and Western portions of Cook Glacier. Here, we use a numerical ice-flow model (Úa) to simulate the instantaneous effects of observed changes at the terminus of Cook Glacier in order to understand the link between these changes and recently observed ice acceleration. Simulations suggest that the acceleration of Cook West was caused by a retreat in calving-front position in the 1970s, potentially enhanced by grounding-line retreat, while acceleration of Cook East was likely caused by ice-shelf thinning and grounding-line retreat in the mid-1990s. Moreover, we show that the instantaneous ice discharge at Cook East would increase by up to 85% if the whole ice shelf is removed and it ungrounds from a pinning point; and that the discharge at Cook West could increase by ~300% if its grounding line retreated by 10 km.

2020 ◽  
pp. 1-11
Author(s):  
Emily A. Hill ◽  
G. Hilmar Gudmundsson ◽  
J. Rachel Carr ◽  
Chris R. Stokes ◽  
Helen M. King

Abstract Ice shelves restrain flow from the Greenland and Antarctic ice sheets. Climate-ocean warming could force thinning or collapse of floating ice shelves and subsequently accelerate flow, increase ice discharge and raise global mean sea levels. Petermann Glacier (PG), northwest Greenland, recently lost large sections of its ice shelf, but its response to total ice shelf loss in the future remains uncertain. Here, we use the ice flow model Úa to assess the sensitivity of PG to changes in ice shelf extent, and to estimate the resultant loss of grounded ice and contribution to sea level rise. Our results have shown that under several scenarios of ice shelf thinning and retreat, removal of the shelf will not contribute substantially to global mean sea level (<1 mm). We hypothesize that grounded ice loss was limited by the stabilization of the grounding line at a topographic high ~12 km inland of its current grounding line position. Further inland, the likelihood of a narrow fjord that slopes seawards suggests that PG is likely to remain insensitive to terminus changes in the near future.


2021 ◽  
Author(s):  
Jim Jordan ◽  
HIlmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamiesson ◽  
...  

&lt;div&gt;The buttressing strength of Antarctic ice shelves directly effects the amount of ice discharge across the grounding line, with buttressing strength affected by both the thickness and extent of an ice shelf. Recent work has shown that a reduction in ice-shelf buttressing due to ocean induced ice-shelf thinning is responsible for a significant portion of increased Antarctic ice discharge (Gudmundsson et al., 2019, but few studies have attempted to show the effect of variability in ice-shelf extent on ice discharge. This variability arises due to ice-shelf calving following a cycle of long periods of slow, continuous calving interposed with calving of large, discrete sections. &amp;#160;These discrete calving events tend to occur on a comparative timeframe to that of the observational record. As such, when determining observed changes in ice discharge it is crucial that this natural variability is separated from any observed trends. &amp;#160;&lt;/div&gt;&lt;div&gt;&amp;#160;&lt;/div&gt;&lt;div&gt;In this work we use the numerical ice-flow model &amp;#218;a in combination with observations of ice shelf extent to diagnostically calculate Antarctic ice discharge. These observations primarily date back to the 1970s, though for some ice shelves records exist back to the 1940s. We assemble an Antarctic wide model for two scenarios: 1) with ice shelves at their maximum observed extent and 2) with ice shelves at their minimum observed extent. We then compare these two scenarios to differences in the observed changes in Antarctic ice-discharge to determine how much can be attributed to natural variance .&lt;/div&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;span&gt;Gudmundsson, G. H.&lt;/span&gt;&lt;span&gt;,&amp;#160;Paolo, F. S.,&amp;#160;Adusumilli, S., &amp;&amp;#160;Fricker, H. A.&amp;#160;(2019).&amp;#160;&lt;/span&gt;Instantaneous Antarctic ice&amp;#8208;&amp;#160;sheet mass loss driven by thinning ice shelves.&amp;#160;&lt;em&gt;Geophysical Research Letters&lt;/em&gt;,&amp;#160;46,&amp;#160;13903&amp;#8211;&amp;#160;13909.&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

&lt;p&gt;The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.&lt;/p&gt;&lt;p&gt;We use the &amp;#218;a numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS.&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 12 (2) ◽  
pp. 505-520 ◽  
Author(s):  
Jan De Rydt ◽  
G. Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite ◽  
Edward C. King

Abstract. We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day−1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.


2020 ◽  
Author(s):  
Tong Zhang ◽  
Stephen F. Price ◽  
Matthew J. Hoffman ◽  
Mauro Perego ◽  
Xylar Asay-Davis

Abstract. We seek to understand causal connections between changes in sub-ice shelf melting, ice shelf buttressing, and grounding-line flux. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding line flux due to localized ice thickness perturbations – a proxy for changes in sub-ice shelf melting – applied to idealized (MISMIP+) and realistic (Larsen C) domains. From our experiments, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding line flux. The origin of this correlation, however, remains elusive from a physical perspective; while local thickness perturbations on the ice shelf (thinning) generally correspond to local increases in buttressing, their integrated impact on changes at the grounding line are exactly the opposite (buttressing at the grounding line decreases and ice flux at the grounding line increases). This and additional complications encountered when examining realistic domains motivates us to seek an alternative approach, an adjoint-based method for calculating the sensitivity of the integrated grounding line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding line flux sensitivity to changes in sub-ice shelf melting.


2020 ◽  
Vol 14 (10) ◽  
pp. 3407-3424
Author(s):  
Tong Zhang ◽  
Stephen F. Price ◽  
Matthew J. Hoffman ◽  
Mauro Perego ◽  
Xylar Asay-Davis

Abstract. Using a numerical ice flow model, we study changes in ice shelf buttressing and grounding-line flux due to localized ice thickness perturbations, a proxy for localized changes in sub-ice-shelf melting. From our experiments, applied to idealized (MISMIP+) and realistic (Larsen C) ice shelf domains, we identify a correlation between a locally derived buttressing number on the ice shelf, based on the first principal stress, and changes in the integrated grounding-line flux. The origin of this correlation, however, remains elusive from the perspective of a theoretical or physically based understanding. This and the fact that the correlation is generally much poorer when applied to realistic ice shelf domains motivate us to seek an alternative approach for predicting changes in grounding-line flux. We therefore propose an adjoint-based method for calculating the sensitivity of the integrated grounding-line flux to local changes in ice shelf geometry. We show that the adjoint-based sensitivity is identical to that deduced from pointwise, diagnostic model perturbation experiments. Based on its much wider applicability and the significant computational savings, we propose that the adjoint-based method is ideally suited for assessing grounding-line flux sensitivity to changes in sub-ice-shelf melting.


2021 ◽  
Author(s):  
Emily A. Hill ◽  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson ◽  
Matthew Collins

Abstract. The future of the Antarctic Ice Sheet in response to climate warming is one of the largest sources of uncertainty in estimates of future changes in global mean sea level (∆GMSL). Mass loss is currently concentrated in regions of warm circumpolar deep water, but it is unclear how ice shelves currently surrounded by relatively cold ocean waters will respond to climatic changes in the future. Studies suggest that warm water could flush the Filchner-Ronne (FR) ice shelf cavity during the 21st century, but the inland ice sheet response to a drastic increase in ice shelf melt rates, is poorly known. Here, we use an ice flow model and uncertainty quantification approach to project the GMSL contribution of the FR basin under RCP emissions scenarios, and assess the forward propagation and proportional contribution of uncertainties in model parameters (related to ice dynamics, and atmospheric/oceanic forcing) on these projections. Our probabilistic projections, derived from an extensive sample of the parameter space using a surrogate model, reveal that the FR basin is unlikely to contribute positively to sea level rise by the 23rd century. This is primarily due to the mitigating effect of increased accumulation with warming, which is capable of suppressing ice loss associated with ocean–driven increases in sub-shelf melt. Mass gain (negative ∆GMSL) from the FR basin increases with warming, but uncertainties in these projections also become larger. In the highest emission scenario RCP 8.5, ∆GMSL is likely to range from −103 to 26 mm, and this large spread can be apportioned predominantly to uncertainties in parameters driving increases in precipitation (30 %) and sub-shelf melting (44 %). There is potential, within the bounds of our input parameter space, for major collapse and retreat of ice streams feeding the FR ice shelf, and a substantial positive contribution to GMSL (up to approx. 300 mm), but we consider such a scenario to be very unlikely. Adopting uncertainty quantification techniques in future studies will help to provide robust estimates of potential sea level rise and further identify target areas for constraining projections.


2017 ◽  
Author(s):  
Jan De Rydt ◽  
G. Hilmar Gudmundsson ◽  
Thomas Nagler ◽  
Jan Wuite ◽  
Edward C. King

Abstract. We report on the recent reactivation of a large chasm in the Brunt Ice Shelf, East Antarctica, in December 2012, and the formation of a 50-km long new rift in October 2016. Observations from a suite of ground based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both cracks in unprecedented detail. Results reveal a steady accelerating trend in the widening of the rifts, in combination with alternating episodes of fast (> 600 m/day) and slow propagation of the crack tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice-flow model and a simple fracture propagation criterion were successfully used to hindcast the observed trajectories, and to simulate future rift progression under different assumptions, showing a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability, and provoke a deeper understanding of similar processes elsewhere in Antarctica.


2014 ◽  
Vol 7 (2) ◽  
pp. 1791-1827
Author(s):  
G. Shaffer

Abstract. The Dcess Antarctic Ice Sheet (DAIS) model is presented. Model hindcasts of Antarctic Ice Sheet (AIS) sea level equivalent are forced by reconstructed Antarctic temperatures, global mean sea level and high-latitude, subsurface ocean temperatures, the latter calculated using the Danish Center for Earth System Science (DCESS) Earth System Model forced by reconstructed global mean atmospheric temperatures. The model is calibrated by comparing such hindcasts for different model configurations with paleoreconstructions of AIS sea level equivalent from the last interglacial, the last glacial maximum and the mid-Holocene. The calibrated model is then validated against present estimates of the rate of AIS ice loss. It is found that a high-order dependency of ice flow at the grounding line on water depth there is needed to capture the observed response of the AIS at ice age terminations. Furthermore it is found that a dependency of this ice flow on ocean subsurface temperature by way of ice shelf demise and a resulting buttressing decrease is needed to explain the contribution of the AIS to global mean sea level rise at the last interglacial. When forced and calibrated in this way, model hindcasts of the rate of present day AIS ice loss agree with recent, data-based estimates of this ice loss rate.


2014 ◽  
Vol 7 (4) ◽  
pp. 1803-1818 ◽  
Author(s):  
G. Shaffer

Abstract. The DCESS (Danish Center for Earth System Science) Antarctic Ice Sheet (DAIS) model is presented. Model hindcasts of Antarctic ice sheet (AIS) sea level equivalent are forced by reconstructed Antarctic temperatures, global mean sea level and high-latitude, ocean subsurface temperatures, the latter calculated using the DCESS model forced by reconstructed global mean atmospheric temperatures. The model is calibrated by comparing such hindcasts for different model configurations with paleoreconstructions of AIS sea level equivalent from the last interglacial, the last glacial maximum and the mid-Holocene. The calibrated model is then validated against present estimates of the rate of AIS ice loss. It is found that a high-order dependency of ice flow at the grounding line on water depth there is needed to capture the observed response of the AIS at ice age terminations. Furthermore, it is found that a dependency of this ice flow on ocean subsurface temperature by way of ice shelf demise and a resulting buttressing decrease is needed to explain the contribution of the AIS to global mean sea level rise at the last interglacial. When forced and calibrated in this way, model hindcasts of the rate of present-day AIS ice loss agree with recent, data-based estimates of this ice loss rate.


Sign in / Sign up

Export Citation Format

Share Document