scholarly journals Weak convergence of the number of vertices at intermediate levels of random recursive trees

2018 ◽  
Vol 55 (4) ◽  
pp. 1131-1142 ◽  
Author(s):  
Alexander Iksanov ◽  
Zakhar Kabluchko

Abstract Let Xn(k) be the number of vertices at level k in a random recursive tree with n+1 vertices. We are interested in the asymptotic behavior of Xn(k) for intermediate levels k=kn satisfying kn→∞ and kn=o(logn) as n→∞. In particular, we prove weak convergence of finite-dimensional distributions for the process (Xn ([knu]))u>0, properly normalized and centered, as n→∞. The limit is a centered Gaussian process with covariance (u,v)↦(u+v)−1. One-dimensional distributional convergence of Xn(kn), properly normalized and centered, was obtained with the help of analytic tools by Fuchs et al. (2006). In contrast, our proofs, which are probabilistic in nature, exploit a connection of our model with certain Crump–Mode–Jagers branching processes.

Author(s):  
Sunil K. Dhar

AbstractConsider the additive effects outliers (A.O.) model where one observes , with The sequence of r.v.s is independent of and , are i.i.d. with d.f. , where the d.f.s Ln, n ≦ 0, are not necessarily known and εj's are i.i.d.. This paper discusses the asymptotic behavior of functional least squares estimators under the above model. Uniform consistency and uniform strong consistency of these estimators are proven. The weak convergence of these estimators to a Gaussian process and their asymptotic biases are also discussed under the above A.O. model.


2020 ◽  
Vol 57 (1) ◽  
pp. 250-265
Author(s):  
Congzao Dong ◽  
Alexander Iksanov

AbstractBy a random process with immigration at random times we mean a shot noise process with a random response function (response process) in which shots occur at arbitrary random times. Such random processes generalize random processes with immigration at the epochs of a renewal process which were introduced in Iksanov et al. (2017) and bear a strong resemblance to a random characteristic in general branching processes and the counting process in a fixed generation of a branching random walk generated by a general point process. We provide sufficient conditions which ensure weak convergence of finite-dimensional distributions of these processes to certain Gaussian processes. Our main result is specialised to several particular instances of random times and response processes.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1264
Author(s):  
Vladimir V. Uchaikin ◽  
Renat T. Sibatov ◽  
Dmitry N. Bezbatko

One-dimensional random walks with a constant velocity between scattering are considered. The exact solution is expressed in terms of multiple convolutions of path-distributions assumed to be different for positive and negative directions of the walk axis. Several special cases are considered when the convolutions are expressed in explicit form. As a particular case, the solution of A. S. Monin for a symmetric random walk with exponential path distribution and its generalization to the asymmetric case are obtained. Solution of fractional telegraph equation with the fractional material derivative is presented. Asymptotic behavior of its solution for an asymmetric case is provided.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos A. M. André ◽  
João Dias

Abstract We consider smooth representations of the unit group G = A × G=\mathcal{A}^{\times} of a finite-dimensional split basic algebra 𝒜 over a non-Archimedean local field. In particular, we prove a version of Gutkin’s conjecture, namely, we prove that every irreducible smooth representation of 𝐺 is compactly induced by a one-dimensional representation of the unit group of some subalgebra of 𝒜. We also discuss admissibility and unitarisability of smooth representations of 𝐺.


2020 ◽  
Vol 70 (6) ◽  
pp. 1457-1468
Author(s):  
Haroon M. Barakat ◽  
M. H. Harpy

AbstractIn this paper, we investigate the asymptotic behavior of the multivariate record values by using the Reduced Ordering Principle (R-ordering). Necessary and sufficient conditions for weak convergence of the multivariate record values based on sup-norm are determined. Some illustrative examples are given.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


2009 ◽  
Vol 29 (2) ◽  
pp. 381-418 ◽  
Author(s):  
V. V. M. S. CHANDRAMOULI ◽  
M. MARTENS ◽  
W. DE MELO ◽  
C. P. TRESSER

AbstractThe period doubling renormalization operator was introduced by Feigenbaum and by Coullet and Tresser in the 1970s to study the asymptotic small-scale geometry of the attractor of one-dimensional systems that are at the transition from simple to chaotic dynamics. This geometry turns out not to depend on the choice of the map under rather mild smoothness conditions. The existence of a unique renormalization fixed point that is also hyperbolic among generic smooth-enough maps plays a crucial role in the corresponding renormalization theory. The uniqueness and hyperbolicity of the renormalization fixed point were first shown in the holomorphic context, by means that generalize to other renormalization operators. It was then proved that, in the space ofC2+αunimodal maps, forα>0, the period doubling renormalization fixed point is hyperbolic as well. In this paper we study what happens when one approaches from below the minimal smoothness thresholds for the uniqueness and for the hyperbolicity of the period doubling renormalization generic fixed point. Indeed, our main result states that in the space ofC2unimodal maps the analytic fixed point is not hyperbolic and that the same remains true when adding enough smoothness to geta prioribounds. In this smoother class, calledC2+∣⋅∣, the failure of hyperbolicity is tamer than inC2. Things get much worse with just a bit less smoothness thanC2, as then even the uniqueness is lost and other asymptotic behavior becomes possible. We show that the period doubling renormalization operator acting on the space ofC1+Lipunimodal maps has infinite topological entropy.


2010 ◽  
Vol 42 (03) ◽  
pp. 834-854 ◽  
Author(s):  
Lasse Leskelä ◽  
Philippe Robert ◽  
Florian Simatos

File-sharing networks are distributed systems used to disseminate files among nodes of a communication network. The general simple principle of these systems is that once a node has retrieved a file, it may become a server for this file. In this paper, the capacity of these networks is analyzed with a stochastic model when there is a constant flow of incoming requests for a given file. It is shown that the problem can be solved by analyzing the asymptotic behavior of a class of interacting branching processes. Several results of independent interest concerning these branching processes are derived and then used to study the file-sharing systems.


Sign in / Sign up

Export Citation Format

Share Document