scholarly journals Weak Convergence of Finite-Dimensional Distributions of the Number of Empty Boxes in the Bernoulli Sieve

2015 ◽  
Vol 59 (1) ◽  
pp. 87-113 ◽  
Author(s):  
A. M. Iksanov ◽  
A. V. Marynych ◽  
V. A. Vatutin
Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1517
Author(s):  
Jinzuo Chen ◽  
Mihai Postolache ◽  
Yonghong Yao

In this paper, the original C Q algorithm, the relaxed C Q algorithm, the gradient projection method ( G P M ) algorithm, and the subgradient projection method ( S P M ) algorithm for the convex split feasibility problem are reviewed, and a renewed S P M algorithm with S-subdifferential functions to solve nonconvex split feasibility problems in finite dimensional spaces is suggested. The weak convergence theorem is established.


2020 ◽  
Vol 57 (1) ◽  
pp. 250-265
Author(s):  
Congzao Dong ◽  
Alexander Iksanov

AbstractBy a random process with immigration at random times we mean a shot noise process with a random response function (response process) in which shots occur at arbitrary random times. Such random processes generalize random processes with immigration at the epochs of a renewal process which were introduced in Iksanov et al. (2017) and bear a strong resemblance to a random characteristic in general branching processes and the counting process in a fixed generation of a branching random walk generated by a general point process. We provide sufficient conditions which ensure weak convergence of finite-dimensional distributions of these processes to certain Gaussian processes. Our main result is specialised to several particular instances of random times and response processes.


2020 ◽  
Vol 72 (9) ◽  
pp. 1179-1194
Author(s):  
A. A. Dorogovtsev ◽  
M. B. Vovchanskii

UDC 519.21 We establish the rate of weak convergence in the fractional step method for the Arratia flow in terms of the Wasserstein distance between the images of the Lebesque measure under the action of the flow. We introduce finite-dimensional densities that describe sequences of collisions in the Arratia flow and derive an explicit expression for them. With the initial interval discretized, we also discuss the convergence of the corresponding approximations of the point measure associated with the Arratia flow in terms of such densities.


1975 ◽  
Vol 18 (4) ◽  
pp. 555-565
Author(s):  
K. L. Mehra

Let {Xi:i=1, 2,…} be a real strictly stationary process (defined on a probability space (Ω, A, P)) which has absolutely continuous finite dimensional distributions (with respect to Lebesgue measure) and satisfies the ϕ-mixing condition: Let and denote the sub-cr-fields generated, respectively, by {Xi:i≤k} and {Xi:i≥k+n}; then, for each k≥1 and n≥l, and together imply.


2018 ◽  
Vol 55 (4) ◽  
pp. 1131-1142 ◽  
Author(s):  
Alexander Iksanov ◽  
Zakhar Kabluchko

Abstract Let Xn(k) be the number of vertices at level k in a random recursive tree with n+1 vertices. We are interested in the asymptotic behavior of Xn(k) for intermediate levels k=kn satisfying kn→∞ and kn=o(logn) as n→∞. In particular, we prove weak convergence of finite-dimensional distributions for the process (Xn ([knu]))u>0, properly normalized and centered, as n→∞. The limit is a centered Gaussian process with covariance (u,v)↦(u+v)−1. One-dimensional distributional convergence of Xn(kn), properly normalized and centered, was obtained with the help of analytic tools by Fuchs et al. (2006). In contrast, our proofs, which are probabilistic in nature, exploit a connection of our model with certain Crump–Mode–Jagers branching processes.


1994 ◽  
Vol 33 (01) ◽  
pp. 81-84 ◽  
Author(s):  
S. Cerutti ◽  
S. Guzzetti ◽  
R. Parola ◽  
M.G. Signorini

Abstract:Long-term regulation of beat-to-beat variability involves several different kinds of controls. A linear approach performed by parametric models enhances the short-term regulation of the autonomic nervous system. Some non-linear long-term regulation can be assessed by the chaotic deterministic approach applied to the beat-to-beat variability of the discrete RR-interval series, extracted from the ECG. For chaotic deterministic systems, trajectories of the state vector describe a strange attractor characterized by a fractal of dimension D. Signals are supposed to be generated by a deterministic and finite dimensional but non-linear dynamic system with trajectories in a multi-dimensional space-state. We estimated the fractal dimension through the Grassberger and Procaccia algorithm and Self-Similarity approaches of the 24-h heart-rate variability (HRV) signal in different physiological and pathological conditions such as severe heart failure, or after heart transplantation. State-space representations through Return Maps are also obtained. Differences between physiological and pathological cases have been assessed and generally a decrease in the system complexity is correlated to pathological conditions.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Sign in / Sign up

Export Citation Format

Share Document