scholarly journals Multitype branching process with non-homogeneous Poisson and contagious Poisson immigration

2021 ◽  
Vol 58 (4) ◽  
pp. 1007-1042
Author(s):  
Landy Rabehasaina ◽  
Jae-Kyung Woo

AbstractIn a multitype branching process, it is assumed that immigrants arrive according to a non-homogeneous Poisson or a contagious Poisson process (both processes are formulated as a non-homogeneous birth process with an appropriate choice of transition intensities). We show that the normalized numbers of objects of the various types alive at time t for supercritical, critical, and subcritical cases jointly converge in distribution under those two different arrival processes. Furthermore, we provide some transient expectation results when there are only two types of particles.

2017 ◽  
Vol 32 (03) ◽  
pp. 1750020 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Aik Hui Chan ◽  
Choo Hiap Oh

We develop a stochastic branching model to describe the jet evolution of supersymmetric (SUSY) particles. This model is a modified two-phase branching process, or more precisely, a two-phase simple birth process plus Poisson process. Both pure SUSY partons initiated jets and SUSY plus ordinary partons initiated jets scenarios are considered. The stochastic branching equations are established and the Multiplicity Distributions (MDs) are derived for these two scenarios. We also fit the distribution of the general case (SUSY plus ordinary partons initiated jets) with experimental data. The fitting shows the SUSY particles have not participated in branching at current collision energy yet.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Manuel Molina-Fernández ◽  
Manuel Mota-Medina

This research work deals with mathematical modeling in complex biological systems in which several types of individuals coexist in various populations. Migratory phenomena among the populations are allowed. We propose a class of mathematical models to describe the demographic dynamics of these type of complex systems. The probability model is defined through a sequence of random matrices in which rows and columns represent the various populations and the several types of individuals, respectively. We prove that this stochastic sequence can be studied under the general setting provided by the multitype branching process theory. Probabilistic properties and limiting results are then established. As application, we present an illustrative example about the population dynamics of biological systems formed by long-lived raptor colonies.


1995 ◽  
Vol 32 (01) ◽  
pp. 1-10
Author(s):  
Ziad Taib

The functional differential equation y′(x) = ay(λx) + by(x) arises in many different situations. The purpose of this note is to show how it arises in some multitype branching process cell population models. We also show how its solution can be given an intuitive interpretation as the probability density function of an infinite sum of independent but not identically distributed random variables.


2019 ◽  
Vol 23 ◽  
pp. 797-802
Author(s):  
Raphaël Cerf ◽  
Joseba Dalmau

Let A be a primitive matrix and let λ be its Perron–Frobenius eigenvalue. We give formulas expressing the associated normalized Perron–Frobenius eigenvector as a simple functional of a multitype Galton–Watson process whose mean matrix is A, as well as of a multitype branching process with mean matrix e(A−I)t. These formulas are generalizations of the classical formula for the invariant probability measure of a Markov chain.


1987 ◽  
Vol 24 (1) ◽  
pp. 246-251 ◽  
Author(s):  
Dietmar Pfeifer ◽  
Ursula Heller

It is shown that an elementary pure birth process is a mixed Poisson process iff the sequence of post-jump intensities forms a martingale with respect to the σ -fields generated by the jump times of the process. In this case, the post-jump intensities converge almost surely to the mixing random variable of the process.


2015 ◽  
Vol 52 (04) ◽  
pp. 1195-1201 ◽  
Author(s):  
Peter Windridge

We give an exponential tail approximation for the extinction time of a subcritical multitype branching process arising from the SIR epidemic model on a random graph with given degrees, where the type corresponds to the vertex degree. As a corollary we obtain a Gumbel limit law for the extinction time, when beginning with a large population. Our contribution is to allow countably many types (this corresponds to unbounded degrees in the random graph epidemic model, as the number of vertices tends to∞). We only require a second moment for the offspring-type distribution featuring in our model.


1977 ◽  
Vol 14 (3) ◽  
pp. 475-482 ◽  
Author(s):  
Violet R. Cane

If events occur in time according to a stochastic process then, under not very restrictive conditions, each realization will appear to come from a Poisson process with its own rate provided that the events in the realization occur at effectively random times. This result is related to de Finetti's theorem on exchangeable events. Particular applications are to the Pólya process describing accidents and the pure birth process.


Sign in / Sign up

Export Citation Format

Share Document