scholarly journals THE COMPLEMENTS OF LOWER CONES OF DEGREES AND THE DEGREE SPECTRA OF STRUCTURES

2016 ◽  
Vol 81 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
URI ANDREWS ◽  
MINGZHONG CAI ◽  
ISKANDER SH. KALIMULLIN ◽  
STEFFEN LEMPP ◽  
JOSEPH S. MILLER ◽  
...  

AbstractWe study Turing degrees a for which there is a countable structure ${\cal A}$ whose degree spectrum is the collection {x : x ≰ a}. In particular, for degrees a from the interval [0′, 0″], such a structure exists if a′ = 0″, and there are no such structures if a″ > 0‴.

2017 ◽  
Vol 82 (1) ◽  
pp. 1-25 ◽  
Author(s):  
DAVID MARKER ◽  
RUSSELL MILLER

AbstractThe degree spectrum of a countable structure is the set of all Turing degrees of presentations of that structure. We show that every nonlow Turing degree lies in the spectrum of some differentially closed field (of characteristic 0, with a single derivation) whose spectrum does not contain the computable degree 0. Indeed, this is an equivalence, for we also show that if this spectrum contained a low degree, then it would contain the degree 0. From these results we conclude that the spectra of differentially closed fields of characteristic 0 are exactly the jump-preimages of spectra of automorphically nontrivial graphs.


2018 ◽  
Vol 83 (1) ◽  
pp. 326-348 ◽  
Author(s):  
RUSSELL MILLER ◽  
BJORN POONEN ◽  
HANS SCHOUTENS ◽  
ALEXANDRA SHLAPENTOKH

AbstractFried and Kollár constructed a fully faithful functor from the category of graphs to the category of fields. We give a new construction of such a functor and use it to resolve a longstanding open problem in computable model theory, by showing that for every nontrivial countable structure${\cal S}$, there exists a countable field${\cal F}$of arbitrary characteristic with the same essential computable-model-theoretic properties as${\cal S}$. Along the way, we develop a new “computable category theory”, and prove that our functor and its partially defined inverse (restricted to the categories of countable graphs and countable fields) are computable functors.


2018 ◽  
Vol 83 (2) ◽  
pp. 817-828 ◽  
Author(s):  
ERIC P. ASTOR

AbstractIn a previous article, the author introduced the idea of intrinsic density—a restriction of asymptotic density to sets whose density is invariant under computable permutation. We prove that sets with well-defined intrinsic density (and particularly intrinsic density 0) exist only in Turing degrees that are either high (${\bf{a}}\prime { \ge _{\rm{T}}}\emptyset \prime \prime$) or compute a diagonally noncomputable function. By contrast, a classic construction of an immune set in every noncomputable degree actually yields a set with intrinsic lower density 0 in every noncomputable degree.We also show that the former result holds in the sense of reverse mathematics, in that (over RCA0) the existence of a dominating or diagonally noncomputable function is equivalent to the existence of a set with intrinsic density 0.


2001 ◽  
Vol 66 (2) ◽  
pp. 441-469 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe show that for every c.e. degree a > 0 there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is {0, a}. This result can be extended in two directions. First we show that for every uniformly c.e. collection of sets S there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is the set of degrees of elements of S. Then we show that if α ∈ ω ∪ {ω} then for any α-c.e. degree a > 0 there exists an intrinsically α-c.e. relation on the domain of a computable structure whose degree spectrum {0, a}. All of these results also hold for m-degree spectra of relations.


2002 ◽  
Vol 67 (2) ◽  
pp. 697-720 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe give some new examples of possible degree spectra of invariant relations on Δ20-categorical computable structures, which demonstrate that such spectra can be fairly complicated. On the other hand, we show that there are nontrivial restrictions on the sets of degrees that can be realized as degree spectra of such relations. In particular, we give a sufficient condition for a relation to have infinite degree spectrum that implies that every invariant computable relation on a Δ20-categorical computable structure is either intrinsically computable or has infinite degree spectrum. This condition also allows us to use the proof of a result of Moses [23] to establish the same result for computable relations on computable linear orderings.We also place our results in the context of the study of what types of degree-theoretic constructions can be carried out within the degree spectrum of a relation on a computable structure, given some restrictions on the relation or the structure. From this point of view we consider the cases of Δ20-categorical structures, linear orderings, and 1-decidable structures, in the last case using the proof of a result of Ash and Nerode [3] to extend results of Harizanov [14].


2016 ◽  
Vol 81 (3) ◽  
pp. 814-832 ◽  
Author(s):  
JULIA KNIGHT ◽  
ANTONIO MONTALBÁN ◽  
NOAH SCHWEBER

AbstractIn this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic presentability, the existence of a copy of the structure in every extension by a given forcing. We show that every forcing notion making ω2 countable generically presents some countable structure with no copy in the ground model; and that every structure generically presentable by a forcing notion that does not make ω2 countable has a copy in the ground model. We also show that any countable structure ${\cal A}$ that is generically presentable by a forcing notion not collapsing ω1 has a countable copy in V, as does any structure ${\cal B}$ generically Muchnik reducible to a structure ${\cal A}$ of cardinality ℵ1. The former positive result yields a new proof of Harrington’s result that counterexamples to Vaught’s conjecture have models of power ℵ1 with Scott rank arbitrarily high below ω2. Finally, we show that a rigid structure with copies in all generic extensions by a given forcing has a copy already in the ground model.


2019 ◽  
Vol 84 (3) ◽  
pp. 1049-1098
Author(s):  
REESE JOHNSTON

AbstractComputability, while usually performed within the context of ω, may be extended to larger ordinals by means of α-recursion. In this article, we concentrate on the particular case of ω1-recursion, and study the differences in the behavior of ${\rm{\Pi }}_1^0$-classes between this case and the standard one.Of particular interest are the ${\rm{\Pi }}_1^0$-classes corresponding to computable trees of countable width. Classically, it is well-known that the analog to König’s Lemma—“every tree of countable width and uncountable height has an uncountable branch”—fails; we demonstrate that not only does it fail effectively, but also that the failure is as drastic as possible. This is proven by showing that the ω1-Turing degrees of even isolated paths in computable trees of countable width are cofinal in the ${\rm{\Delta }}_1^1\,{\omega _1}$-Turing degrees.Finally, we consider questions of nonisolated paths, and demonstrate that the degrees realizable as isolated paths and the degrees realizable as nonisolated ones are very distinct; in particular, we show that there exists a computable tree of countable width so that every branch can only be ω1-Turing equivalent to branches of trees with ${\aleph _2}$-many branches.


2006 ◽  
Vol 71 (1) ◽  
pp. 119-136 ◽  
Author(s):  
Stephen Binns ◽  
Bjørn Kjos-Hanssen ◽  
Manuel Lerman ◽  
Reed Solomon

Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uniform almost everywhere domination to study recursion theoretic analogues of results in set theory concerning domination in generic extensions of transitive models of ZFC and to study regularity properties of the Lebesgue measure on 2ω in reverse mathematics. In this article, we examine one of their conjectures concerning these notions.Throughout this article, ≤T denotes Turing reducibility and μ denotes the Lebesgue (or “fair coin”) probability measure on 2ω given byA property holds almost everywhere or for almost all X ∈ 2ω if it holds on a set of measure 1. For f, g ∈ ωω, f dominatesg if ∃m∀n < m(f(n) > g(n)).(Dobrinen, Simpson). A set A ∈ 2ωis almost everywhere (a.e.) dominating if for almost all X ∈ 2ω and all functions g ≤TX, there is a function f ≤TA such that f dominates g. A is uniformly almost everywhere (u.a.e.) dominating if there is a function f ≤TA such that for almost all X ∈ 2ω and all functions g ≤TX, f dominates g.There are several trivial but useful observations to make about these definitions. First, although these properties are stated for sets, they are also properties of Turing degrees. That is, a set is (u.)a.e. dominating if and only if every other set of the same degree is (u.)a.e. dominating. Second, both properties are closed upwards in the Turing degrees. Third, u.a.e. domination implies a.e. domination. Finally, if A is u.a.e. dominating, then there is a function f ≤TA which dominates every computable function.


2016 ◽  
Vol 81 (3) ◽  
pp. 1028-1046 ◽  
Author(s):  
DENIS R. HIRSCHFELDT ◽  
CARL G. JOCKUSCH ◽  
RUTGER KUYPER ◽  
PAUL E. SCHUPP

AbstractA coarse description of a set A ⊆ ω is a set D ⊆ ω such that the symmetric difference of A and D has asymptotic density 0. We study the extent to which noncomputable information can be effectively recovered from all coarse descriptions of a given set A, especially when A is effectively random in some sense. We show that if A is 1-random and B is computable from every coarse description D of A, then B is K-trivial, which implies that if A is in fact weakly 2-random then B is computable. Our main tool is a kind of compactness theorem for cone-avoiding descriptions, which also allows us to prove the same result for 1-genericity in place of weak 2-randomness. In the other direction, we show that if $A \le _{{\rm{T}}} \emptyset {\rm{'}}$ is a 1-random set, then there is a noncomputable c.e. set computable from every coarse description of A, but that not all K-trivial sets are computable from every coarse description of some 1-random set. We study both uniform and nonuniform notions of coarse reducibility. A set Y is uniformly coarsely reducible to X if there is a Turing functional Φ such that if D is a coarse description of X, then ΦD is a coarse description of Y. A set B is nonuniformly coarsely reducible to A if every coarse description of A computes a coarse description of B. We show that a certain natural embedding of the Turing degrees into the coarse degrees (both uniform and nonuniform) is not surjective. We also show that if two sets are mutually weakly 3-random, then their coarse degrees form a minimal pair, in both the uniform and nonuniform cases, but that the same is not true of every pair of relatively 2-random sets, at least in the nonuniform coarse degrees.


2019 ◽  
Vol 84 (1) ◽  
pp. 393-407
Author(s):  
LAURENT BIENVENU ◽  
CHRISTOPHER P. PORTER

AbstractIn this paper, we study the power and limitations of computing effectively generic sequences using effectively random oracles. Previously, it was known that every 2-random sequence computes a 1-generic sequence (as shown by Kautz) and every 2-random sequence forms a minimal pair in the Turing degrees with every 2-generic sequence (as shown by Nies, Stephan, and Terwijn). We strengthen these results by showing that every Demuth random sequence computes a 1-generic sequence and that every Demuth random sequence forms a minimal pair with every pb-generic sequence (where pb-genericity is an effective notion of genericity that is strictly between 1-genericity and 2-genericity). Moreover, we prove that for every comeager${\cal G} \subseteq {2^\omega }$, there is some weakly 2-random sequenceXthat computes some$Y \in {\cal G}$, a result that allows us to provide a fairly complete classification as to how various notions of effective randomness interact in the Turing degrees with various notions of effective genericity.


Sign in / Sign up

Export Citation Format

Share Document