scholarly journals TURING DEGREE SPECTRA OF DIFFERENTIALLY CLOSED FIELDS

2017 ◽  
Vol 82 (1) ◽  
pp. 1-25 ◽  
Author(s):  
DAVID MARKER ◽  
RUSSELL MILLER

AbstractThe degree spectrum of a countable structure is the set of all Turing degrees of presentations of that structure. We show that every nonlow Turing degree lies in the spectrum of some differentially closed field (of characteristic 0, with a single derivation) whose spectrum does not contain the computable degree 0. Indeed, this is an equivalence, for we also show that if this spectrum contained a low degree, then it would contain the degree 0. From these results we conclude that the spectra of differentially closed fields of characteristic 0 are exactly the jump-preimages of spectra of automorphically nontrivial graphs.

2016 ◽  
Vol 81 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
URI ANDREWS ◽  
MINGZHONG CAI ◽  
ISKANDER SH. KALIMULLIN ◽  
STEFFEN LEMPP ◽  
JOSEPH S. MILLER ◽  
...  

AbstractWe study Turing degrees a for which there is a countable structure ${\cal A}$ whose degree spectrum is the collection {x : x ≰ a}. In particular, for degrees a from the interval [0′, 0″], such a structure exists if a′ = 0″, and there are no such structures if a″ > 0‴.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


1990 ◽  
Vol 55 (3) ◽  
pp. 1138-1142 ◽  
Author(s):  
Anand Pillay

We point out that a group first order definable in a differentially closed field K of characteristic 0 can be definably equipped with the structure of a differentially algebraic group over K. This is a translation into the framework of differentially closed fields of what is known for groups definable in algebraically closed fields (Weil's theorem).I restrict myself here to showing (Theorem 20) how one can find a large “differentially algebraic group chunk” inside a group defined in a differentially closed field. The rest of the translation (Theorem 21) follows routinely, as in [B].What is, perhaps, of interest is that the proof proceeds at a completely general (soft) model theoretic level, once Facts 1–4 below are known.Fact 1. The theory of differentially closed fields of characteristic 0 is complete and has quantifier elimination in the language of differential fields (+, ·,0,1, −1,d).Fact 2. Affine n-space over a differentially closed field is a Noetherian space when equipped with the differential Zariski topology.Fact 3. If K is a differentially closed field, k ⊆ K a differential field, and a and are in k, then a is in the definable closure of k ◡ iff a ∈ ‹› (where k ‹› denotes the differential field generated by k and).Fact 4. The theory of differentially closed fields of characteristic zero is totally transcendental (in particular, stable).


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


2001 ◽  
Vol 66 (2) ◽  
pp. 441-469 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe show that for every c.e. degree a > 0 there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is {0, a}. This result can be extended in two directions. First we show that for every uniformly c.e. collection of sets S there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is the set of degrees of elements of S. Then we show that if α ∈ ω ∪ {ω} then for any α-c.e. degree a > 0 there exists an intrinsically α-c.e. relation on the domain of a computable structure whose degree spectrum {0, a}. All of these results also hold for m-degree spectra of relations.


2002 ◽  
Vol 67 (2) ◽  
pp. 697-720 ◽  
Author(s):  
Denis R. Hirschfeldt

AbstractWe give some new examples of possible degree spectra of invariant relations on Δ20-categorical computable structures, which demonstrate that such spectra can be fairly complicated. On the other hand, we show that there are nontrivial restrictions on the sets of degrees that can be realized as degree spectra of such relations. In particular, we give a sufficient condition for a relation to have infinite degree spectrum that implies that every invariant computable relation on a Δ20-categorical computable structure is either intrinsically computable or has infinite degree spectrum. This condition also allows us to use the proof of a result of Moses [23] to establish the same result for computable relations on computable linear orderings.We also place our results in the context of the study of what types of degree-theoretic constructions can be carried out within the degree spectrum of a relation on a computable structure, given some restrictions on the relation or the structure. From this point of view we consider the cases of Δ20-categorical structures, linear orderings, and 1-decidable structures, in the last case using the proof of a result of Ash and Nerode [3] to extend results of Harizanov [14].


1988 ◽  
Vol 53 (3) ◽  
pp. 878-887 ◽  
Author(s):  
Kate Copestake

The structure of the Turing degrees of generic and n-generic sets has been studied fairly extensively, especially for n = 1 and n = 2. The original formulation of 1-generic set in terms of recursively enumerable sets of strings is due to D. Posner [11], and much work has since been done, particularly by C. G. Jockusch and C. T. Chong (see [5] and [6]).In the enumeration degrees (see definition below), attention has previously been restricted to generic sets and functions. J. Case used genericity for many of the results in his thesis [1]. In this paper we develop a notion of 1-generic partial function, and study the structure and characteristics of such functions in the enumeration degrees. We find that the e-degree of a 1-generic function is quasi-minimal. However, there are no e-degrees minimal in the 1-generic e-degrees, since if a 1-generic function is recursively split into finitely or infinitely many parts the resulting functions are e-independent (in the sense defined by K. McEvoy [8]) and 1-generic. This result also shows that any recursively enumerable partial ordering can be embedded below any 1-generic degree.Many results in the Turing degrees have direct parallels in the enumeration degrees. Applying the minimal Turing degree construction to the partial degrees (the e-degrees of partial functions) produces a total partial degree ae which is minimal-like; that is, all functions in degrees below ae have partial recursive extensions.


1984 ◽  
Vol 49 (2) ◽  
pp. 625-629 ◽  
Author(s):  
Lou van den Dries

(1.1) A well-known example of a theory with built-in Skolem functions is (first-order) Peano arithmetic (or rather a certain definitional extension of it). See [C-K, pp. 143, 162] for the notion of a theory with built-in Skolem functions, and for a treatment of the example just mentioned. This property of Peano arithmetic obviously comes from the fact that in each nonempty definable subset of a model we can definably choose an element, namely, its least member.(1.2) Consider now a real closed field R and a nonempty subset D of R which is definable (with parameters) in R. Again we can definably choose an element of D, as follows: D is a union of finitely many singletons and intervals (a, b) where – ∞ ≤ a < b ≤ + ∞; if D has a least element we choose that element; if not, D contains an interval (a, b) for which a ∈ R ∪ { − ∞}is minimal; for this a we choose b ∈ R ∪ {∞} maximal such that (a, b) ⊂ D. Four cases have to be distinguished:(i) a = − ∞ and b = + ∞; then we choose 0;(ii) a = − ∞ and b ∈ R; then we choose b − 1;(iii) a ∈ R and b ∈ = + ∞; then we choose a + 1;(iv) a ∈ R and b ∈ R; then we choose the midpoint (a + b)/2.It follows as in the case of Peano arithmetic that the theory RCF of real closed fields has a definitional extension with built-in Skolem functions.


2017 ◽  
Vol 2019 (6) ◽  
pp. 1863-1893 ◽  
Author(s):  
Jeffrey D Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.


Sign in / Sign up

Export Citation Format

Share Document