scholarly journals A MODEL-THEORETIC CHARACTERIZATION OF MONADIC SECOND ORDER LOGIC ON INFINITE WORDS

2017 ◽  
Vol 82 (1) ◽  
pp. 62-76 ◽  
Author(s):  
SILVIO GHILARDI ◽  
SAMUEL J. VAN GOOL

AbstractMonadic second order logic and linear temporal logic are two logical formalisms that can be used to describe classes of infinite words, i.e., first-order models based on the natural numbers with order, successor, and finitely many unary predicate symbols.Monadic second order logic over infinite words (S1S) can alternatively be described as a first-order logic interpreted in${\cal P}\left( \omega \right)$, the power set Boolean algebra of the natural numbers, equipped with modal operators for ‘initial’, ‘next’, and ‘future’ states. We prove that the first-order theory of this structure is the model companion of a class of algebras corresponding to a version of linear temporal logic (LTL) without until.The proof makes crucial use of two classical, nontrivial results from the literature, namely the completeness of LTL with respect to the natural numbers, and the correspondence between S1S-formulas and Büchi automata.

1992 ◽  
Vol 03 (03) ◽  
pp. 233-244 ◽  
Author(s):  
A. SAOUDI ◽  
D.E. MULLER ◽  
P.E. SCHUPP

We introduce four classes of Z-regular grammars for generating bi-infinite words (i.e. Z-words) and prove that they generate exactly Z-regular languages. We extend the second order monadic theory of one successor to the set of the integers (i.e. Z) and give some characterizations of this theory in terms of Z-regular grammars and Z-regular languages. We prove that this theory is decidable and equivalent to the weak theory. We also extend the linear temporal logic to Z-temporal logic and then prove that each Z-temporal formula is equivalent to a first order monadic formula. We prove that the correctness problem for finite state processes is decidable.


2004 ◽  
Vol 69 (1) ◽  
pp. 118-136 ◽  
Author(s):  
H. Jerome Keisler ◽  
Wafik Boulos Lotfallah

AbstractThis paper studies the expressive power that an extra first order quantifier adds to a fragment of monadic second order logic, extending the toolkit of Janin and Marcinkowski [JM01].We introduce an operation existsn (S) on properties S that says “there are n components having S”. We use this operation to show that under natural strictness conditions, adding a first order quantifier word u to the beginning of a prefix class V increases the expressive power monotonically in u. As a corollary, if the first order quantifiers are not already absorbed in V, then both the quantifier alternation hierarchy and the existential quantifier hierarchy in the positive first order closure of V are strict.We generalize and simplify methods from Marcinkowski [Mar99] to uncover limitations of the expressive power of an additional first order quantifier, and show that for a wide class of properties S, S cannot belong to the positive first order closure of a monadic prefix class W unless it already belongs to W.We introduce another operation alt(S) on properties which has the same relationship with the Circuit Value Problem as reach(S) (defined in [JM01]) has with the Directed Reachability Problem. We use alt(S) to show that Πn ⊈ FO(Σn), Σn ⊈ FO(∆n). and ∆n+1 ⊈ FOB(Σn), solving some open problems raised in [Mat98].


2016 ◽  
Vol 17 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Michael Elberfeld ◽  
Martin Grohe ◽  
Till Tantau

10.29007/t28j ◽  
2018 ◽  
Author(s):  
Loris D'Antoni ◽  
Margus Veanes

We extend weak monadic second-order logic of one successor (WS1S) to symbolic alphabets byallowing character predicates to range over decidable first order theories and not just finite alphabets.We call this extension symbolic WS1S (s-WS1S). We then propose two decision procedures for such alogic: 1) we use symbolic automata to extend the classic reduction from WS1S to finite automata toour symbolic logic setting; 2) we show that every s-WS1S formula can be reduced to a WS1S formulathat preserves satisfiability, at the price of an exponential blow-up.


2012 ◽  
Vol 7 ◽  
Author(s):  
Anders Søgaard ◽  
Søren Lind Kristiansen

Existing logic-based querying tools for dependency treebanks use first order logic or monadic second order logic. We introduce a very fast model checker based on hybrid logic with operators ↓, @ and A and show that it is much faster than an existing querying tool for dependency treebanks based on first order logic, and much faster than an existing general purpose hybrid logic model checker. The querying tool is made publicly available.


1999 ◽  
Vol Vol. 3 no. 3 ◽  
Author(s):  
Thomas Schwentick ◽  
Klaus Barthelmann

International audience Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively.


1985 ◽  
Vol 50 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Anne Bauval

This article is a rewriting of my Ph.D. Thesis, supervised by Professor G. Sabbagh, and incorporates a suggestion from Professor B. Poizat. My main result can be crudely summarized (but see below for detailed statements) by the equality: first-order theory of F[Xi]i∈I = weak second-order theory of F.§I.1. Conventions. The letter F will always denote a commutative field, and I a nonempty set. A field or a ring (A; +, ·) will often be written A for short. We shall use symbols which are definable in all our models, and in the structure of natural numbers (N; +, ·):— the constant 0, defined by the formula Z(x): ∀y (x + y = y);— the constant 1, defined by the formula U(x): ∀y (x · y = y);— the operation ∹ x − y = z ↔ x = y + z;— the relation of division: x ∣ y ↔ ∃ z(x · z = y).A domain is a commutative ring with unity and without any zero divisor.By “… → …” we mean “… is definable in …, uniformly in any model M of L”.All our constructions will be uniform, unless otherwise mentioned.§I.2. Weak second-order models and languages. First of all, we have to define the models Pf(M), Sf(M), Sf′(M) and HF(M) associated to a model M = {A; ℐ) of a first-order language L [CK, pp. 18–20]. Let L1 be the extension of L obtained by adjunction of a second list of variables (denoted by capital letters), and of a membership symbol ∈. Pf(M) is the model (A, Pf(A); ℐ, ∈) of L1, (where Pf(A) is the set of finite subsets of A. Let L2 be the extension of L obtained by adjunction of a second list of variables, a membership symbol ∈, and a concatenation symbol ◠.


Author(s):  
Tim Button ◽  
Sean Walsh

This chapter focuses on modelists who want to pin down the isomorphism type of the natural numbers. This aim immediately runs into two technical barriers: the Compactness Theorem and the Löwenheim-Skolem Theorem (the latter is proven in the appendix to this chapter). These results show that no first-order theory with an infinite model can be categorical; all such theories have non-standard models. Other logics, such as second-order logic with its full semantics, are not so expressively limited. Indeed, Dedekind's Categoricity Theorem tells us that all full models of the Peano axioms are isomorphic. However, it is a subtle philosophical question, whether one is entitled to invoke the full semantics for second-order logic — there are at least four distinct attitudes which one can adopt to these categoricity result — but moderate modelists are unable to invoke the full semantics, or indeed any other logic with a categorical theory of arithmetic.


Sign in / Sign up

Export Citation Format

Share Document