Categoricity and the natural numbers

Author(s):  
Tim Button ◽  
Sean Walsh

This chapter focuses on modelists who want to pin down the isomorphism type of the natural numbers. This aim immediately runs into two technical barriers: the Compactness Theorem and the Löwenheim-Skolem Theorem (the latter is proven in the appendix to this chapter). These results show that no first-order theory with an infinite model can be categorical; all such theories have non-standard models. Other logics, such as second-order logic with its full semantics, are not so expressively limited. Indeed, Dedekind's Categoricity Theorem tells us that all full models of the Peano axioms are isomorphic. However, it is a subtle philosophical question, whether one is entitled to invoke the full semantics for second-order logic — there are at least four distinct attitudes which one can adopt to these categoricity result — but moderate modelists are unable to invoke the full semantics, or indeed any other logic with a categorical theory of arithmetic.

2012 ◽  
Vol 18 (1) ◽  
pp. 91-121 ◽  
Author(s):  
Jouko Väänänen

AbstractWe try to answer the question which is the “right” foundation of mathematics, second order logic or set theory. Since the former is usually thought of as a formal language and the latter as a first order theory, we have to rephrase the question. We formulate what we call the second order view and a competing set theory view, and then discuss the merits of both views. On the surface these two views seem to be in manifest conflict with each other. However, our conclusion is that it is very difficult to see any real difference between the two. We analyze a phenomenonwe call internal categoricity which extends the familiar categoricity results of second order logic to Henkin models and show that set theory enjoys the same kind of internal categoricity. Thus the existence of non-standard models, which is usually taken as a property of first order set theory, and categoricity, which is usually taken as a property of second order axiomatizations, can coherently coexist when put into their proper context. We also take a fresh look at complete second order axiomatizations and give a hierarchy result for second order characterizable structures. Finally we consider the problem of existence in mathematics from both points of view and find that second order logic depends on what we call large domain assumptions, which come quite close to the meaning of the axioms of set theory.


1985 ◽  
Vol 50 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Anne Bauval

This article is a rewriting of my Ph.D. Thesis, supervised by Professor G. Sabbagh, and incorporates a suggestion from Professor B. Poizat. My main result can be crudely summarized (but see below for detailed statements) by the equality: first-order theory of F[Xi]i∈I = weak second-order theory of F.§I.1. Conventions. The letter F will always denote a commutative field, and I a nonempty set. A field or a ring (A; +, ·) will often be written A for short. We shall use symbols which are definable in all our models, and in the structure of natural numbers (N; +, ·):— the constant 0, defined by the formula Z(x): ∀y (x + y = y);— the constant 1, defined by the formula U(x): ∀y (x · y = y);— the operation ∹ x − y = z ↔ x = y + z;— the relation of division: x ∣ y ↔ ∃ z(x · z = y).A domain is a commutative ring with unity and without any zero divisor.By “… → …” we mean “… is definable in …, uniformly in any model M of L”.All our constructions will be uniform, unless otherwise mentioned.§I.2. Weak second-order models and languages. First of all, we have to define the models Pf(M), Sf(M), Sf′(M) and HF(M) associated to a model M = {A; ℐ) of a first-order language L [CK, pp. 18–20]. Let L1 be the extension of L obtained by adjunction of a second list of variables (denoted by capital letters), and of a membership symbol ∈. Pf(M) is the model (A, Pf(A); ℐ, ∈) of L1, (where Pf(A) is the set of finite subsets of A. Let L2 be the extension of L obtained by adjunction of a second list of variables, a membership symbol ∈, and a concatenation symbol ◠.


1985 ◽  
Vol 50 (3) ◽  
pp. 714-742 ◽  
Author(s):  
Stewart Shapiro

There are well-known theorems in mathematical logic that indicate rather profound differences between the logic of first-order languages and the logic of second-order languages. In the first-order case, for example, there is Gödel's completeness theorem: every consistent set of sentences (vis-à-vis a standard axiomatization) has a model. As a corollary, first-order logic is compact: if a set of formulas is not satisfiable, then it has a finite subset which also is not satisfiable. The downward Löwenheim-Skolem theorem is that every set of satisfiable first-order sentences has a model whose cardinality is at most countable (or the cardinality of the set of sentences, whichever is greater), and the upward Löwenheim-Skolem theorem is that if a set of first-order sentences has, for each natural number n, a model whose cardinality is at least n, then it has, for each infinite cardinal κ (greater than or equal to the cardinality of the set of sentences), a model of cardinality κ. It follows, of course, that no set of first-order sentences that has an infinite model can be categorical. Second-order logic, on the other hand, is inherently incomplete in the sense that no recursive, sound axiomatization of it is complete. It is not compact, and there are many well-known categorical sets of second-order sentences (with infinite models). Thus, there are no straightforward analogues to the Löwenheim-Skolem theorems for second-order languages and logic.There has been some controversy in recent years as to whether “second-order logic” should be considered a part of logic, but this boundary issue does not concern me directly, at least not here.


2017 ◽  
Vol 82 (1) ◽  
pp. 62-76 ◽  
Author(s):  
SILVIO GHILARDI ◽  
SAMUEL J. VAN GOOL

AbstractMonadic second order logic and linear temporal logic are two logical formalisms that can be used to describe classes of infinite words, i.e., first-order models based on the natural numbers with order, successor, and finitely many unary predicate symbols.Monadic second order logic over infinite words (S1S) can alternatively be described as a first-order logic interpreted in${\cal P}\left( \omega \right)$, the power set Boolean algebra of the natural numbers, equipped with modal operators for ‘initial’, ‘next’, and ‘future’ states. We prove that the first-order theory of this structure is the model companion of a class of algebras corresponding to a version of linear temporal logic (LTL) without until.The proof makes crucial use of two classical, nontrivial results from the literature, namely the completeness of LTL with respect to the natural numbers, and the correspondence between S1S-formulas and Büchi automata.


1993 ◽  
Vol 58 (2) ◽  
pp. 672-687 ◽  
Author(s):  
P. T. Bateman ◽  
C. G. Jockusch ◽  
A. R. Woods

AbstractIt is shown, assuming the linear case of Schinzel's Hypothesis, that the first-order theory of the structure 〈ω; +, P〉, where P is the set of primes, is undecidable and, in fact, that multiplication of natural numbers is first-order definable in this structure. In the other direction, it is shown, from the same hypothesis, that the monadic second-order theory of 〈ω S, P〉 is decidable, where S is the successor function. The latter result is proved using a general result of A. L. Semënov on decidability of monadic theories, and a proof of Semënov's result is presented.


1999 ◽  
Vol 5 (3) ◽  
pp. 289-302 ◽  
Author(s):  
Gabriel Uzquiano

In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levels UαVα. The recursive definition of the Vα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory (ZF) shows that Vω, the first transfinite level of the hierarchy, is a model of all the axioms of ZF with the exception of the axiom of infinity. And, in general, one finds that if κ is a strongly inaccessible ordinal, then Vκ is a model of all of the axioms of ZF. (For all these models, we take ∈ to be the standard element-set relation restricted to the members of the domain.) Doubtless, when cast as a first-order theory, ZF does not characterize the structures 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal, by the Löwenheim-Skolem theorem. Still, one of the main achievements of [12] consisted in establishing that a characterization of these models can be attained when one ventures into second-order logic. For let second-order ZF be, as usual, the theory that results from ZF when the axiom schema of replacement is replaced by its second-order universal closure. Then, it is a remarkable result due to Zermelo that second-order ZF can only be satisfied in models of the form 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal.


1989 ◽  
Vol 54 (1) ◽  
pp. 122-137
Author(s):  
Rami Grossberg

AbstractLet L(Q) be first order logic with Keisler's quantifier, in the λ+ interpretation (= the satisfaction is defined as follows: M ⊨ (Qx)φ(x) means there are λ+ many elements in M satisfying the formula φ(x)).Theorem 1. Let λ be a singular cardinal; assume □λ and GCH. If T is a complete theory in L(Q) of cardinality at most λ, and p is an L(Q) 1-type so that T strongly omits p( = p has no support, to be defined in §1), then T has a model of cardinality λ+ in the λ+ interpretation which omits p.Theorem 2. Let λ be a singular cardinal, and let T be a complete first order theory of cardinality λ at most. Assume □λ and GCH. If Γ is a smallness notion then T has a model of cardinality λ+ such that a formula φ(x) is realized by λ+ elements of M iff φ(x) is not Γ-small. The theorem is proved also when λ is regular assuming λ = λ<λ. It is new when λ is singular or when ∣T∣ = λ is regular.Theorem 3. Let λ be singular. If Con(ZFC + GCH + ∃κ) [κ is a strongly compact cardinal]), then the following is consistent: ZFC + GCH + the conclusions of all above theorems are false.


2004 ◽  
Vol 10 (2) ◽  
pp. 153-174 ◽  
Author(s):  
Øystein Linnebo

AbstractFrege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume's Principle, which says that the number of Fs is identical to the number of Gs if and only if the Fs and the Gs can be one-to-one correlated. According to Frege's Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume's Principle, the other, with the underlying second-order logic—and investigates how much of Frege's Theorem goes through in various partially predicative fragments of FA. Theorem 1 shows that almost everything goes through, the most important exception being the axiom that every natural number has a successor. Theorem 2 shows that the Successor Axiom cannot be proved in the theories that are predicative in either dimension.


Author(s):  
Shawn Hedman

We consider various extensions of first-order logic. Informally, a logic 𝓛 is an extension of first-order logic if every sentence of first-order logic is also a sentence of 𝓛. We also require that 𝓛 is closed under conjunction and negation and has other basic properties of a logic. In Section 9.4, we list the properties that formally define the notion of an extension of first-order logic. Prior to Section 9.4, we provide various natural examples of such extensions. In Sections 9.1–9.3, we consider, respectively, second-order logic, infinitary logics, and logics with fixed-point operators. We do not provide a thorough treatment of any one of these logics. Indeed, we could easily devote an entire chapter to each. Rather, we define each logic and provide examples that demonstrate the expressive power of the logics. In particular, we show that none of these logics has compactness. In the final Section 9.4, we prove that if a proper extension of first-order logic has compactness, then the Downward Löwenhiem–Skolem theorem must fail for that logic. This is Lindstrom’s theorem. The Compactness theorem and Downward Löwenheim–Skolem theorem are two crucial results for model theory. Every property of first-order logic from Chapter 4 is a consequence of these two theorems. Lindström’s theorem implies that the only extension of first-order logic possessing these properties is first-order logic itself. Second-order logic is the extension of first-order logic that allows quantification of relations. The symbols of second-order logic are the same symbols used in first-order logic. The syntax of second-order logic is defined by adding one rule to the syntax of first-order logic. The additional rule makes second-order logic far more expressive than first-order logic. Specifically, the syntax of second-order logic is defined as follows. Any atomic first-order formula is a formula of second-order logic. Moreover, we have the following four rules: (R1) If φ is a formula then so is ¬φ. (R2) If φ and ψ are formulas then so is φ ∧ ψ. (R3) If φ is a formula, then so is ∃x φ for any variable x.


Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


Sign in / Sign up

Export Citation Format

Share Document