scholarly journals BASES AND BOREL SELECTORS FOR TALL FAMILIES

2019 ◽  
Vol 84 (1) ◽  
pp. 359-375
Author(s):  
JAN GREBÍK ◽  
CARLOS UZCÁTEGUI

AbstractGiven a family${\cal C}$of infinite subsets of${\Bbb N}$, we study when there is a Borel function$S:2^{\Bbb N} \to 2^{\Bbb N} $such that for every infinite$x \in 2^{\Bbb N} $,$S\left( x \right) \in {\Cal C}$and$S\left( x \right) \subseteq x$. We show that the family of homogeneous sets (with respect to a partition of a front) as given by the Nash-Williams’ theorem admits such a Borel selector. However, we also show that the analogous result for Galvin’s lemma is not true by proving that there is an$F_\sigma $tall ideal on${\Bbb N}$without a Borel selector. The proof is not constructive since it is based on complexity considerations. We construct a${\bf{\Pi }}_2^1 $tall ideal on${\Bbb N}$without a tall closed subset.

Author(s):  
Micol Amar ◽  
Giovanni Bellettini ◽  
Sergio Venturini

Let I ⊂ ℝ be a bounded open interval, (I) be the family of all open subintervals of I and let p > 1. The aim of this paper is to give an integral representation result for abstract functionals F: W1,p(I;ℝn) × (I) → [0, + ∞) which are lower semicontinuous and satisfy suitable properties. In particular, we prove an integral representation theorem for the Г-limit of a sequence {Fh}h, of functionals of the formwhere each fh is a Borel function satisfying proper growth conditions.


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.


1972 ◽  
Vol 72 (2) ◽  
pp. 209-212 ◽  
Author(s):  
R. J. Cook

Heilbronn (6) proved that for every ε ≥ 0 and N ≥ 1 and every real θ there is an integer x such that,where C(ε) depends only on ε and ∥α∥ is the difference between α and the nearest integer, taken positively. Danicic(1) obtained an analogous result for the fractional parts of nkθ, the proof of this is more readily accessible in Davenport(4). Danicic(2) also obtained an estimate for the fractional parts of a real quadratic form in n variables, and in order to extend this result to forms of higher degree it is desirable to first obtain results for additive forms.


1974 ◽  
Vol 26 (6) ◽  
pp. 1351-1355 ◽  
Author(s):  
Ronald J. Leach

Let denote the family of all functions of the formthat are analytic in the unit disc U, f′(z) ≠ 0 in U and f maps U onto a domain of boundary rotation at most . Recently Brannan, Clunie and Kirwan [2] and Aharonov and Friedland [1] have solved the problem of estimating |amp+1| for all , provided m = 1.


1961 ◽  
Vol 13 ◽  
pp. 505-518 ◽  
Author(s):  
Gregers L. Krabbe

Let be the Boolean algebra of all finite unions of subcells of the plane. Denote by εpthe algebra of all linear bounded transformations of Lp(— ∞, ∞) into itself. Suppose for a moment that p = 2, and let Rp be an involutive abelian subalgebra of εp if Rp is also a Banach space and if Tp ∈ Rp, then:(i) The family of all homomorphic mappings of into the algebra Rp contains a member EPT such that(1)


2018 ◽  
Vol 166 (3) ◽  
pp. 523-542 ◽  
Author(s):  
FLORIAN BOUYER ◽  
EDGAR COSTA ◽  
DINO FESTI ◽  
CHRISTOPHER NICHOLLS ◽  
MCKENZIE WEST

AbstractLet ℙ denote the weighted projective space with weights (1, 1, 1, 3) over the rationals, with coordinates x, y, z and w; let $\mathcal{X}$ be the generic element of the family of surfaces in ℙ given by \begin{equation*} X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2. \end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field ℚ(t). In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$, together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family X.


2007 ◽  
Vol 49 (2) ◽  
pp. 333-344 ◽  
Author(s):  
YANN BUGEAUD ◽  
ANDREJ DUJELLA ◽  
MAURICE MIGNOTTE

AbstractIt is proven that ifk≥ 2 is an integer anddis a positive integer such that the product of any two distinct elements of the setincreased by 1 is a perfect square, thend= 4kord= 64k5−48k3+8k. Together with a recent result of Fujita, this shows that all Diophantine quadruples of the form {k− 1,k+ 1,c,d} are regular.


1982 ◽  
Vol 35 (1) ◽  
pp. 28-38
Author(s):  
J. B. Parker

In a notable series of articles, Hsu advances theoretical models which are used to graduate 7582 observations of aircraft lateral deviations. The goodness of fit of these models, as judged by the χ2 test, is satisfactory. Hsu's main theoretical model is the Double Double Exponential distribution (DDE), a three parameter model whose probability density function is given byOther model types are also considered, such as the family of exponential power distributions whose probability density is cited by Hsu insection 9. This leads to a four-parameter model, and the fit is (not surprisingly) better even than that of the DDE.


2014 ◽  
Vol 35 (7) ◽  
pp. 2171-2197 ◽  
Author(s):  
LUNA LOMONACO

In this paper we introduce the notion of parabolic-like mapping. Such an object is similar to a polynomial-like mapping, but it has a parabolic external class, i.e. an external map with a parabolic fixed point. We define the notion of parabolic-like mapping and we study the dynamical properties of parabolic-like mappings. We prove a straightening theorem for parabolic-like mappings which states that any parabolic-like mapping of degree two is hybrid conjugate to a member of the family $$\begin{eqnarray}\mathit{Per}_{1}(1)=\left\{[P_{A}]\,\bigg|\,P_{A}(z)=z+\frac{1}{z}+A,~A\in \mathbb{C}\right\}\!,\end{eqnarray}$$ a unique such member if the filled Julia set is connected.


Sign in / Sign up

Export Citation Format

Share Document