scholarly journals A Sensitive Search for Predicted Methanol Maser Transitions with the Australia Telescope Compact Array

Author(s):  
A. Chipman ◽  
S. P. Ellingsen ◽  
A. M. Sobolev ◽  
D. M. Cragg

AbstractWe have used the Australia Telescope Compact Array to search for a number of centimetre wavelength methanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial, and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations, we are able to place an upper limit of ≲ 1300 K on the brightness temperature of any emission from the 31A+–31A−, 17−2–18−3 E (vt = 1), 124–133 A−, 124–133 A+, and 41A+–41A− transitions of methanol in these sources on angular scales of 2 arcsec. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes.

2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2012 ◽  
Vol 8 (S292) ◽  
pp. 39-39
Author(s):  
S. L. Breen ◽  
S. P. Ellingsen

AbstractDetermining an evolutionary clock for high-mass star formation is an important step towards realizing a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. Our recent studies have shown that masers have great potential to accurately trace the evolution of these regions. We have investigated the relative evolutionary phases associated with the presence of combinations of water, methanol and hydroxyl masers. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species, a result that we now aim to corroborate through comparisons with chemical clocks.Using our new, large samples of methanol masers at 6.7 GHz (MMB survey; Green et al. (2009)) and 12.2 GHz (Breen et al. 2012), 22 GHz water masers (Breen & Ellingsen 2012), OH masers together with complementary data, we find strong evidence that it is not only the presence or absence of the different maser species that indicates the evolutionary stage of the associated high-mass star formation region (see e.g. Breen et al. (2010)), but that the properties of those masers can give even finer evolutionary details. Most notably, the intensity and velocity range of detected maser emission increases as the star forming region evolves (Breen et al. 2011).Subsequent work we have undertaken (Ellingsen et al. 2011) has shown that the presence of rare 37.7 GHz methanol masers may signal the end of the methanol maser phase. They show that 37.7 GHz methanol masers are associated only with the most luminous 6.7 and 12.2 GHz methanol masers, which combined with the rarity of these objects is consistent with them being a short lived phase towards the end of the 6.7 GHz methanol maser lifetime.An independent confirmation of our maser evolutionary timeline can be gained through comparisons with chemical clocks. MALT90 is a legacy survey of 1000s of dense star forming cores at 90GHz, simultaneously observing 16 molecular lines with the Mopra radio telescope (see e.g. Foster et al. 2011). It provides the perfect dataset to test the maser evolutionary timeline due to the targeted lines and the fact that at least one-quarter of the MALT90 sources correspond to maser sites, providing a large enough sample for meaningful analysis. From our preliminary analysis, we find that star formation regions showing similar maser properties also show similar thermal line properties; as would be expected if our evolutionary scenario were accurate.


2013 ◽  
Vol 435 (1) ◽  
pp. 524-530 ◽  
Author(s):  
S. L. Breen ◽  
S. P. Ellingsen ◽  
Y. Contreras ◽  
J. A. Green ◽  
J. L. Caswell ◽  
...  

2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.


2012 ◽  
Vol 8 (S287) ◽  
pp. 161-165
Author(s):  
S. V. Kalenskii ◽  
V. I. Slysh ◽  
L. E. B. Johansson ◽  
P. Bergman ◽  
S. Kurtz ◽  
...  

AbstractFour Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, a rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.


2009 ◽  
Vol 5 (H15) ◽  
pp. 800-800
Author(s):  
J. A. Green ◽  
J. L. Caswell ◽  
G. A. Fuller ◽  
A. Avison ◽  
S. L. Breen ◽  
...  

AbstractThe methanol multi-beam (MMB) survey has produced the largest and most complete catalogue of Galactic 6.7-GHz methanol masers to date. 6.7-GHz methanol masers are exclusively associated with high-mass star formation, and as such provide invaluable insight into the Galactic distribution and properties of high-mass star formation regions. I present the statistical properties of the MMB catalogue and, through the calculation of kinematic distances, investigate the resolution of distance ambiguities and explore the Galactic distribution.


2004 ◽  
Vol 221 ◽  
pp. 133-140 ◽  
Author(s):  
S P Ellingsen

Astrophysical masers are one of the most readily detected signposts of high-mass star formation. Their presence indicates special conditions, probably indicative of a specific evolutionary phase. Masers also represent the ultimate high-resolution probe of star formation with the potential to reveal information on the kinematics and physical conditions within the region at milli-arcsecond resolution. To date this potential has largely remained unfulfilled, however, recent advances suggest that this will soon change.The key to unlocking the potential of masers lies in identifying where they fit within the star formation jigsaw puzzle. I will review recent high resolution observations of OH, water and methanol maser transitions and what they reveal. I also briefly discuss how multi-transition observations of OH and methanol masers are being used to constrain maser pumping models and through this estimate the physical conditions in the masing region.


2017 ◽  
Vol 13 (S336) ◽  
pp. 321-322 ◽  
Author(s):  
R. Sarniak ◽  
M. Szymczak ◽  
A. Bartkiewicz

AbstractMethanol masers observed at high angular resolution are useful tool to investigate the processes of high-mass star formation. Here, we present the results of statistical analysis of the 6.7 GHz methanol maser structures in 60 sources observed with the EVN. The parameters of the maser clouds and exciting stars were derived. There is evidence that the emission structures composed of larger number of maser clouds are formed in the vicinity of more luminous exciting stars.


2012 ◽  
Vol 8 (S287) ◽  
pp. 284-285 ◽  
Author(s):  
Do-Young Byun ◽  
Kee-Tae Kim ◽  
Jae-Han Bae

AbstractThe Class II 6.7-GHz methanol maser is a tracer of high mass young stellar objects. We present results of a 44-GHz class I methanol maser and 22-GHz water maser survey using the KVN (Korean VLBI Network) 21-m single dish radio telescopes towards 284 6.7-GHz maser sites. Class I methanol maser and water maser emission is detected towards 116 (41%) and 136 (48%) sources, respectively. About 50 sources have a peak flux density higher than 10 Jy at 44-GHz. They are candidates for VLBI studies using the KVN.


2001 ◽  
Vol 205 ◽  
pp. 280-281
Author(s):  
S. Kurtz ◽  
P. Hofner ◽  
C. Vargas ◽  
W. Díaz-Merced

We present high angular resolution centimeter and millimeter continuum observations of several galactic massive star formation regions. Using calibration techniques pioneered at the Very Large Array, we are able to obtain high quality images even under adverse conditions of phase stability. Techniques such as these will be essential if future millimeter arrays are to obtain high quality and high precision images. We provide a current summary of our on-going survey, and present images and a brief discussion of several of the more intriguing sources.


Sign in / Sign up

Export Citation Format

Share Document