scholarly journals APPLICATION OF A HOLISTIC APPROACH OF HYDROGEN INTERNAL COMBUSTION ENGINE (HICE) BUSSES

2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.

2016 ◽  
Vol 18 (7) ◽  
pp. 701-716 ◽  
Author(s):  
John R Fyffe ◽  
Mark A Donohue ◽  
Maria C Regalbuto ◽  
Chris F Edwards

This article discusses an approach to exceeding current peak exergy efficiencies of approximately 50% for transportation-scale engines. A detailed model was developed for an internal combustion engine and a fuel cell, where the internal combustion engine is operated under fuel-rich conditions to produce a hydrogen-rich exhaust gas as a fuel for the fuel cell. The strategy of using combustion and electrochemical energy conversion processes has been shown to reduce reaction-related exergy losses while providing the balance of plant necessary to achieve efficient thermal management. Prior approaches which used internal combustion engines downstream of the fuel cell have shown exergy efficiencies near 70%. The system architecture developed for this article, in addition to achieving exergy efficiencies near 70%, provides further advantages. The internal combustion engine, producing work in addition to generating synthesis gas, enables a quick-start approach to this mixed strategy and the ability to use a range of fuels. Therefore, the proposed architecture supplies a very efficient starting point for the development of a quick-start, hybridized system for transportation-scale applications.


2021 ◽  
pp. 112-115

Hydrogen fuel constitutes an attainable alternative strategy, which can be implemented in the long term. This strategy can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility. Hydrogen internal combustion engines represent a doable and less expensive solution for using hydrogen than purchasing a new car equipped with a hydrogen fuel cell. Conventional piston engines can be switched to gas operation with relatively little change. This approach is environmentally more viable, as in a short time most vehicles can be switched to emission-free operation. Also, it can avoid the risk of commodity supply dependency (rare earths and copper) and can delay the still open decisions on e-mobility.


2013 ◽  
Vol 724-725 ◽  
pp. 715-722 ◽  
Author(s):  
R. K. Calay ◽  
Mohamad Y. Mustafa ◽  
Mahmoud F. Mustafa

In this paper; technological challenges and commercialization barriers for Proton Exchange Membrane (PEM) fuel cell are presented. Initially, the criteria that must be met by the energy source of the future is presented from the point of view of the authors. Sustainability, high energy content and combustion independence are recognized as the main decisive factor of future fuels, which are all met by hydrogen, consequently the application of fuel cells as combustion free direct energy converters of the future. Fuel cell technology as an alternative to heat engines is discussed in the context of the current status of fuel cells in various applications. Finally, the challenges facing fuel cell technology to replace heat engines from the commercial and research points of view are presented and discussed supported by current trends in the industry. It is concluded that there have been several advancements and breakthrough in materials, manufacturing and fabricating techniques of fuel cells since the eighties, many of these challenges which are associated with cost and durability still exist when compared with the already matured technology of internal combustion engines. Any effort to achieve these goals would be a significant contribution to the technology of the fuel cell.


Author(s):  
Siti H. Osman ◽  
S. K. Kamarudin ◽  
Nabila A. Karim ◽  
Sahriah Basri

Sign in / Sign up

Export Citation Format

Share Document