scholarly journals On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative

Author(s):  
Anh Tuan Nguyen ◽  
Tomás Caraballo ◽  
Nguyen Huy Tuan

In this study, we investigate the intial value problem (IVP) for a time-fractional fourth-order equation with nonlinear source terms. More specifically, we consider the time-fractional biharmonic with exponential nonlinearity and the time-fractional Cahn–Hilliard equation. By using the Fourier transform concept, the generalized formula for the mild solution as well as the smoothing effects of resolvent operators are proved. For the IVP associated with the first one, by using the Orlicz space with the function $\Xi (z)={\textrm {e}}^{|z|^{p}}-1$ and some embeddings between it and the usual Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall blow up in a finite time if the initial value is regular. In the case of singular initial data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the regularity of the mild solution is investigated. For the IVP associated with the second one, some modifications to the generalized formula are made to deal with the nonlinear term. We also establish some important estimates for the derivatives of resolvent operators, they are the basis for using the Picard sequence to prove the local-in-time existence of the solution.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiaopeng Zhao

AbstractIn this paper, we study the long time behavior of solution for the initial-boundary value problem of convective Cahn–Hilliard equation in a 2D case. We show that the equation has a global attractor in $H^{4}(\Omega )$ H 4 ( Ω ) when the initial value belongs to $H^{1}(\Omega )$ H 1 ( Ω ) .


2009 ◽  
Vol 06 (03) ◽  
pp. 549-575 ◽  
Author(s):  
J. COLLIANDER ◽  
S. IBRAHIM ◽  
M. MAJDOUB ◽  
N. MASMOUDI

We investigate the initial value problem for a defocusing nonlinear Schrödinger equation with exponential nonlinearity [Formula: see text] We identify subcritical, critical, and supercritical regimes in the energy space. We establish global well-posedness in the subcritical and critical regimes. Well-posedness fails to hold in the supercritical case.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pierre Roux ◽  
Delphine Salort

<p style='text-indent:20px;'>The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Tianlong Shen ◽  
Jianhua Huang ◽  
Jin Li

The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected by the regularity of initial value with delays.


2019 ◽  
Vol 53 (1) ◽  
pp. 57-72
Author(s):  
Marcos Josías Ceballos-Lira ◽  
Aroldo Pérez

In this paper we prove the local existence of a nonnegative mild solution for a nonautonomous semilinear heat equation with Dirichlet condition, and give sucient conditions for the globality and for the blow up infinite time of the mild solution. Our approach for the global existence goes back to the Weissler's technique and for the nite time blow up we uses the intrinsic ultracontractivity property of the semigroup generated by the diffusion operator.


Author(s):  
Yuan-wei Qi

In this paper we study the Cauchy problem in Rn of general parabolic equations which take the form ut = Δum + ts|x|σup with non-negative initial value. Here s ≧ 0, m > (n − 2)+/n, p > max (1, m) and σ > − 1 if n = 1 or σ > − 2 if n ≧ 2. We prove, among other things, that for p ≦ pc, where pc ≡ m + s(m − 1) + (2 + 2s + σ)/n > 1, every nontrivial solution blows up in finite time. But for p > pc a positive global solution exists.


2016 ◽  
Vol 60 (2) ◽  
pp. 481-497 ◽  
Author(s):  
Tarek Saanouni

AbstractWe study two different heat-type equations. First, global well-posedness in the energy space of some high-order semilinear heat-type equation with exponential nonlinearity is obtained for even space dimensions. Second, a finite-time blow-up result for the critical monomial focusing heat equation with the p-Laplacian is proved.


1988 ◽  
Vol 41 (10) ◽  
pp. 371-378 ◽  
Author(s):  
W. J. Hrusa ◽  
J. A. Nohel ◽  
M. Renardy

We review some recent mathematical results concerning integrodiff erential equations that model the motion of one-dimensional nonlinear viscoelastic materials. In particular, we discuss global (in time) existence and long-time behavior of classical solutions, as well as the formation of singularities in finite time from smooth initial data. Although the mathematical theory is comparatively incomplete, we make some remarks concerning the existence of weak solutions (i e, solutions with shocks). Some relevant results from linear wave propagation will also be discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nguyen Hoang Luc ◽  
Le Dinh Long ◽  
Ho Thi Kim Van ◽  
Van Thinh Nguyen

AbstractIn this paper, we study the fractional nonlinear Rayleigh–Stokes equation under nonlocal integral conditions, and the existence and uniqueness of the mild solution to our problem are considered. The ill-posedness of the mild solution to the problem recovering the initial value is also investigated. To tackle the ill-posedness, a regularized solution is constructed by the Fourier truncation method, and the convergence rate to the exact solution of this method is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document