scholarly journals Lake-level changes and hominin occupations in the arid Turkana basin during volcanic closure of the Omo River outflows to the Indian Ocean

2018 ◽  
Vol 91 (2) ◽  
pp. 892-909 ◽  
Author(s):  
Xavier Boës ◽  
Sandrine Prat ◽  
Vincent Arrighi ◽  
Craig Feibel ◽  
Bereket Haileab ◽  
...  

AbstractIn the East African Rift, the western margin of Lake Turkana (northern Kenya) exposes Mio-Plio-Pleistocene lake sediments with dated volcanic horizons constraining basin dynamics at the astronomical time scale. Since the late Pliocene, coastal archaeological sites have formed within the lacustrine dynamics. Here, lake levels are reconstructed from 2.4 to 1.7 Ma using sedimentary facies and water/depth-controlled sediment association. The lacustrine stratigraphy is measured with a total station, and cyclostratigraphy is derived from tephrochronology. The water depths are evaluated from paleochemical properties of lake sediments analyzed by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry. Our reconstruction highlights that Lake Turkana rose during 100 ka insolation/eccentricity maxima periods in response to higher monsoonal inputs of the Omo River. However, Lake Turkana also expanded through an insolation minimum at 2.17–1.95 Ma. This asynchronous lake phase coincides with volcanic closure of the Omo River and Lake Turkana outflow sill to the east and the Indian Ocean. An archaeological hiatus occurs during this endorheic lake phase, and alkalinity increases at the beginning of the hiatus. The lake rose again during insolation/eccentricity maxima at 1.9–1.7 Ma, and a new outflow sill opened to the west and the Nile basin. Hominin coastal occupations return during this exorheic/freshwater lake phase.

2020 ◽  
Vol 16 ◽  
Author(s):  
Diogo L. R. Novo ◽  
Priscila T. Scaglioni ◽  
Rodrigo M. Pereira ◽  
Filipe S. Rondan ◽  
Gilberto S. Coelho Junior ◽  
...  

Background: Conventional analytical methods for phosphorus and sulfur determination in several matrices present normally analytical challenges regarding inaccuracy, detectability and waste generation. Objective: The main objective is proposing a green and feasible analytical method for phosphorus and sulfur determination in animal feed. Methods: Synergic effect between microwave and ultraviolet radiations during sample preparation was evaluated for the first time for the animal feed digestion associated with further phosphorus and sulfur determination by ion chromatography with conductivity detection. Dissolved carbon and residual acidity in final digests were used for the proposed method assessment. Phosphorus and sulfur values were compared with those obtained using conventional microwave-assisted wet digestion in closed vessels associated with inductively coupled plasma optical emission spectrometry and with those obtained using Association of Official Analytical Chemists International official method. Recovery tests and certified reference material analysis were performed. Animal feeds were analyzed using the proposed method. Results: Sample masses of 500 mg were efficiently digested using only 2 mol L -1 HNO3. The results obtained by the proposed method was not differing significantly (p > 0.05) from those obtained by the conventional and official methods. Suitable recoveries (from 94 to 99%), agreement with certified values (101 and 104%) and relative standard deviations (< 8%) were achieved. Phosphorus and sulfur content in commercial products varied in a wide range (P: 5,873 to 28,387 mg kg-1 and S: 2,165 to 4,501 mg kg-1 ). Conclusion: The proposed method is a green, safe, accurate, precise and sensitive alternative for animal feed quality control.


Author(s):  
Masoud Aghahoseini ◽  
Gholamhassan Azimi ◽  
M. K. Amini

Determination of traces of Cd, Co, Cu, Mn and Pb elements in zirconium and its alloys by inductively coupled plasma optical emission spectrometry (ICP OES) suffers from severe spectral interferences...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nozomi Miyawaki ◽  
Takashi Fukushima ◽  
Takafumi Mizuno ◽  
Miyao Inoue ◽  
Kenji Takisawa

AbstractBiomass may ignite due to biological oxidation and chemical oxidation. If this phenomenon (spontaneous ignition) is controlled, it would be possible to produce biochar at a lower cost without the need for an external heat resource. We investigated if self-heating could be controlled by using sawdust and bark chips. When sawdust and bark chips were used under controlled conditions, the bark chips temperature increased to the torrefaction temperature. The ash content of bark chips was ~ 2%d.b. higher than that of sawdust; consequently, the inorganic substances contained in the bark chips might affect the self-heating. Self-heating was suppressed when inorganic substances were removed by washing with water. Therefore, the inorganic substances in the biomass might have affected self-heating. The inorganic element contents of the bark chips were measured by inductively coupled plasma optical emission spectrometry before and after washing. The potassium content of the bark chips was reduced remarkably by washing, and there was a possible influence of potassium on self-heating. Finally, the effect of moisture content on self-heating was investigated to obtain stable reactivity. Thus, at a moisture content of 40%w.b., a steady self-heating behavior may be realized.


Sign in / Sign up

Export Citation Format

Share Document