Causes and implications of Mid- to Late Holocene relative sea-level change in the Gulf of Kachchh, western India

2020 ◽  
pp. 1-24
Author(s):  
Shubhra Sharma ◽  
Gaurav Chauhan ◽  
Anil Dutt Shukla ◽  
Romi Nambiar ◽  
Ravi Bhushan ◽  
...  

Abstract The relict intertidal deposits from the Kharod River Estuary, Gulf of Kachchh, and the distal end of Kori Creek are used to infer the Mid- to Late Holocene relative sea-level (RSL) change in western India. Employing sedimentology, geochemistry, palynology, ichnology, and optical and radiocarbon dating, the study suggests the dominance of fluvial activity between 16.5 ± 1.6 and 9.9 ± 0.7 ka. After ~7 ka (7.3 ± 0.4, 6.8 ± 0.5 ka), the sea level showed a positive tendency until 4.7 ± 0.2 ka. The tectonically corrected Mid-Holocene RSL change is estimated as 1.45 ± 0.33 m between ~7 and ~5 ka. The study suggests that the Mid-Holocene RSL high was due to the meltwater contribution from the Himalayan cryosphere, with subordinate contribution from glacio-isostatic adjustment and crustal subsidence. The Late Holocene tectonically corrected RSL change at ~1 ka (1.1 ± 0.1 ka and 1045 ± 175 cal yr BP) is estimated as 0.53 ± 0.43 m. This is ascribed to monsoon wind-driven tidal ingression that might have affected the tidal amplitude positively. The study suggests that the Mid-Holocene RSL change did not play a deterministic role in the abandonment of the Harappan coastal settlements.

2015 ◽  
Vol 84 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Christine A. Hamilton ◽  
Jeremy M. Lloyd ◽  
Natasha L.M. Barlow ◽  
James B. Innes ◽  
Rachel Flecker ◽  
...  

Relative sea-level change (RSL), from the Late Glacial through to the late Holocene, is reconstructed for the Assynt region, northwest Scotland, based on bio- and lithostratigraphical analysis. Four new radiocarbon-dated sea-level index points help constrain RSL change for the Late Glacial to the late Holocene. These new data, in addition to published material, capture the RSL fall during the Late Glacial and the rise and fall associated with the mid-Holocene highstand. Two of these index points constrain the Late Glacial RSL history in Assynt for the first time, reconstructing RSL falling from 2.47 ± 0.59 m OD to 0.15 ± 0.59 m OD at c. 14,000–15,000 cal yr BP. These new data test model predictions of glacial isostatic adjustment (GIA), particularly during the early deglacial period which is currently poorly constrained throughout the British Isles. Whilst the empirical data from the mid- to late-Holocene to present matches quite well with the recent GIA model output, there is a relatively poor fit between the timing of the Late Glacial RSL fall and early Holocene RSL rise. This mismatch, also evident elsewhere in northwest Scotland, may result from uncertainties associated with both the global and local ice components of GIA models.


2008 ◽  
Vol 23 (5) ◽  
pp. 415-433 ◽  
Author(s):  
Anthony C. Massey ◽  
W. Roland Gehrels ◽  
Dan J. Charman ◽  
Glenn A. Milne ◽  
W. Richard Peltier ◽  
...  

2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anders Schomacker ◽  
Wesley R. Farnsworth ◽  
Ólafur Ingólfsson ◽  
Lis Allaart ◽  
Lena Håkansson ◽  
...  

2019 ◽  
Author(s):  
Anders Schomacker ◽  
◽  
Wesley R. Farnsworth ◽  
Ólafur Ingólfsson ◽  
Lis Allaart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document