scholarly journals Radiocarbon Dating of a Speleothem Record of Paleoclimate for Angkor, Cambodia

Radiocarbon ◽  
2017 ◽  
Vol 59 (6) ◽  
pp. 1873-1890 ◽  
Author(s):  
Quan Hua ◽  
Duncan Cook ◽  
Jens Fohlmeister ◽  
Dan Penny ◽  
Paul Bishop ◽  
...  

AbstractWe report the chronological construction for the top portion of a speleothem, PC1, from southern Cambodia with the aim of reconstructing a continuous high-resolution climate record covering the fluorescence and decline of the medieval Khmer kingdom and its capital at Angkor (~9th–15th centuries AD). Earlier attempts to date PC1 by the standard U-Th method proved unsuccessful. We have therefore dated this speleothem using radiocarbon. Fifty carbonate samples along the growth axis of PC1 were collected for accelerator mass spectrometry (AMS) analysis. Chronological reconstruction for PC1 was achieved using two different approaches described by Hua et al. (2012a) and Lechleitner et al. (2016a). Excellent concordance between the two age-depth models indicates that the top ~47 mm of PC1 grew during the last millennium with a growth hiatus during ~1250–1650 AD, resulting from a large change in measured 14C values at 34.4–35.2 mm depth. The timing of the growth hiatus covers the period of decades-long droughts during the 14th–16th centuries AD indicated in regional climate records.

Radiocarbon ◽  
2002 ◽  
Vol 44 (3) ◽  
pp. 717-732 ◽  
Author(s):  
P T Craddock ◽  
M L Wayman ◽  
A J T Jull

The continuing improvements in accelerator mass spectrometry (AMS) dating technology mean that it is possible to work on ever smaller samples, which in turn, make an ever wider range of sample potentially available for dating. This paper discusses some of the difficulties arising with the interpretation of AMS dates obtained from carbon in iron. The overriding problem is that the carbon, now in chemical combination with the iron, could have come from a variety of sources with very different origins. These are now potentially an iressolvable mixture in the iron. For iron made over the last millennium, there are the additional problems associated with the use of both fossil fuel and biomass fuel in different stages of the iron making, leading to great confusion, especially with authenticity studies.


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 455-463 ◽  
Author(s):  
T H Donders ◽  
F Wagner ◽  
K van der Borg ◽  
A F M de Jong ◽  
H Visscher

Sub-fossil sections from a Florida wetland were accelerator mass spectrometry (AMS) dated and the sedimentological conditions were determined. 14C data were calibrated using a combined wiggle-match and 14C bomb-pulse approach. Repeatable results were obtained providing accurate peat chronologies for the last 130 calendar yr. Assessment of the different errors involved led to age models with 3–5 yr precision. This allows direct calibration of paleoenvironmental proxies with meteorological data. The time frame in which 14C dating is commonly applied can possibly be extended to include the 20th century.


Radiocarbon ◽  
2010 ◽  
Vol 52 (3) ◽  
pp. 933-940 ◽  
Author(s):  
Shinya Yatsuzuka ◽  
Mitsuru Okuno ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Yohei Setoma ◽  
...  

We performed accelerator mass spectrometry (AMS) radiocarbon dating and wiggle-matching of 2 wood samples from charred trunks of trees (samples A and B) collected from an ignimbrite deposit on the northeastern slope of the Baitoushan Volcano on the border of China and North Korea. The obtained calendar years for the eruption are cal AD 945–960 for sample A and cal AD 859–884 and cal AD 935–963 for sample B in the 2-σ range. These results are unable to determine the precise eruption age. The reason for the difference in reported ages may be due to volcanic gas emission prior to the huge eruption.


Radiocarbon ◽  
2009 ◽  
Vol 51 (3) ◽  
pp. 977-986 ◽  
Author(s):  
Christopher M Wurster ◽  
Michael I Bird ◽  
Ian Bull ◽  
Charlotte Bryant ◽  
Philippa Ascough

We present accelerator mass spectrometry (AMS) radiocarbon dates on several organic fractions isolated from tropical guano deposits recovered from insular Southeast Asia. Differences were observed between 14C measurements made on bulk guano as well as bulk lipids, the saturated hydrocarbon fraction, solvent-extracted guano, and insect cuticles extracted from the same bulk sample. We infer that 14C dates from the bulk lipid fraction and saturated hydrocarbon fractions can be variably contaminated by exogenous carbon. In contrast, 14C measurements on solvent-extracted guano and isolated insect cuticles appear to yield the most robust age determinations.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 843-849 ◽  
Author(s):  
Georges Bonani ◽  
Susan Ivy ◽  
Willy Wölfli ◽  
Magen Broshi ◽  
Israel Carmi ◽  
...  

The name Dead Sea Scrolls refers to some 1200 manuscripts found in caves in the hills on the western shore of the Dead Sea during the last 45 years. They range in size from small fragments to complete books from the holy scriptures (the Old Testament). The manuscripts also include uncanonized sectarian books, letters and commercial documents, written on papyrus and parchment. In only a few cases, direct information on the date of writing was found in the scrolls. In all other cases, the dating is based on indirect archaeological and paleographical evidence. To check this evidence, radiocarbon ages of 14 selected scrolls were determined using accelerator mass spectrometry. The calibrated radiocarbon ages agree well, except in one case, with the paleographic estimates or the specific dates noted on the scrolls.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 1109-1114 ◽  
Author(s):  
Zhiyu Guo ◽  
Kexin Liu ◽  
Xiangyang Lu ◽  
Hongji Ma ◽  
Kun Li ◽  
...  

Tianma-Qucun is the biggest site of Western Zhou Dynasty discovered in Shanxi Province, China. It has been recognized as the early capital of Jin, a vassal state of Western Zhou. The territories were granted to the first Marquis of Jin with the title in the early days of Western Zhou. Bone sample series from the site were radiocarbon-dated by accelerator mass spectrometry (AMS) and calibrated with the Oxford calibration program OxCal 3.5. Bayesian analysis of the calibrated ages shows that the earliest residents of the Western Zhou came to Tianma-Qucun area in 1020–940 BC and the lower boundary of the Western Zhou is 796–754 BC, which corresponds well to the historical record 770 BC.


Radiocarbon ◽  
2008 ◽  
Vol 50 (3) ◽  
pp. 437-445 ◽  
Author(s):  
E Uchida ◽  
O Cunin ◽  
I Shimoda ◽  
Y Takubo ◽  
T Nakagawa

In the Angkor monuments of Cambodia, pieces of wood remain (as head frames of doorways, crossbeams, ceiling boards, etc.) in the following 8 monuments: Bakong, Lolei, Baksei Chamkrong, North Khleang, Angkor Wat, Banteay Kdei, Bayon, and Gates of Angkor Thorn. Accelerator mass spectrometry (AMS) radiocarbon dating carried out on 15 wood samples collected from the above 8 monuments revealed that most of the wood samples are original, except for the head frame of a doorway in Baksei Chamkrong, the ceiling boards in the northwest tower, and a crossbeam with pivot hole in the southwest tower of the Inner Gallery of Angkor Wat. The 14C age for the head frame of a doorway in the inner wall under the central tower of North Khleang supports the hypothesis that the inner walls are additions from a later period.


Radiocarbon ◽  
2009 ◽  
Vol 51 (2) ◽  
pp. 873-881 ◽  
Author(s):  
M Oinonen ◽  
G Haggren ◽  
A Kaskela ◽  
M Lavento ◽  
V Palonen ◽  
...  

The iron dating project Aikarauta has been launched in Finland. This paper presents the results of the preliminary investigations. The ability for radiocarbon measurement by accelerator mass spectrometry (AMS) of iron in Finland has been demonstrated by using coal-produced iron as reference material. An elemental analyzer has been harnessed to measure the carbon content of small iron samples. In addition, we have hypothesized that a fingerprint of the limestone usage in the smelting process is the high Ca content of iron and slag. This has been examined by performing an iron smelting experiment with limestone as flux, by making elemental analyses of ingredients and the resulting slag and iron, and by a 14C analysis of the produced iron. It is possible that limestone dilutes the 14C contents of the produced iron, making its age determination challenging.


Sign in / Sign up

Export Citation Format

Share Document