scholarly journals Heavy-Traffic Limits for a Many-Server Queueing Network with Switchover

2013 ◽  
Vol 45 (03) ◽  
pp. 645-672
Author(s):  
Guodong Pang ◽  
David D. Yao

We study a multiclass Markovian queueing network with switchover across a set of many-server stations. New arrivals to each station follow a nonstationary Poisson process. Each job waiting in queue may, after some exponentially distributed patience time, switch over to another station or leave the network following a probabilistic and state-dependent mechanism. We analyze the performance of such networks under the many-server heavy-traffic limiting regimes, including the critically loaded quality-and-efficiency-driven (QED) regime, and the overloaded efficiency-driven (ED) regime. We also study the limits corresponding to mixing the underloaded quality-driven (QD) regime with the QED and ED regimes. We establish fluid and diffusion limits of the queue-length processes in all regimes. The fluid limits are characterized by ordinary differential equations. The diffusion limits are characterized by stochastic differential equations, with a piecewise-linear drift term and a constant (QED) or time-varying (ED) covariance matrix. We investigate the load balancing effect of switchover in the mixed regimes, demonstrating the migration of workload from overloaded stations to underloaded stations and quantifying the load balancing impact of switchover probabilities.

2013 ◽  
Vol 45 (3) ◽  
pp. 645-672 ◽  
Author(s):  
Guodong Pang ◽  
David D. Yao

We study a multiclass Markovian queueing network with switchover across a set of many-server stations. New arrivals to each station follow a nonstationary Poisson process. Each job waiting in queue may, after some exponentially distributed patience time, switch over to another station or leave the network following a probabilistic and state-dependent mechanism. We analyze the performance of such networks under the many-server heavy-traffic limiting regimes, including the critically loaded quality-and-efficiency-driven (QED) regime, and the overloaded efficiency-driven (ED) regime. We also study the limits corresponding to mixing the underloaded quality-driven (QD) regime with the QED and ED regimes. We establish fluid and diffusion limits of the queue-length processes in all regimes. The fluid limits are characterized by ordinary differential equations. The diffusion limits are characterized by stochastic differential equations, with a piecewise-linear drift term and a constant (QED) or time-varying (ED) covariance matrix. We investigate the load balancing effect of switchover in the mixed regimes, demonstrating the migration of workload from overloaded stations to underloaded stations and quantifying the load balancing impact of switchover probabilities.


2021 ◽  
Author(s):  
Gideon Weiss

Applications of queueing network models have multiplied in the last generation, including scheduling of large manufacturing systems, control of patient flow in health systems, load balancing in cloud computing, and matching in ride sharing. These problems are too large and complex for exact solution, but their scale allows approximation. This book is the first comprehensive treatment of fluid scaling, diffusion scaling, and many-server scaling in a single text presented at a level suitable for graduate students. Fluid scaling is used to verify stability, in particular treating max weight policies, and to study optimal control of transient queueing networks. Diffusion scaling is used to control systems in balanced heavy traffic, by solving for optimal scheduling, admission control, and routing in Brownian networks. Many-server scaling is studied in the quality and efficiency driven Halfin–Whitt regime and applied to load balancing in the supermarket model and to bipartite matching in ride-sharing applications.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Mohammed Belmekki ◽  
Kheira Mekhalfi

This paper is devoted to study the existence of mild solutions for semilinear functional differential equations with state-dependent delay involving the Riemann-Liouville fractional derivative in a Banach space and resolvent operator. The arguments are based upon M?nch?s fixed point theoremand the technique of measure of noncompactness.


2020 ◽  
Vol 7 (1) ◽  
pp. 272-280
Author(s):  
Mamadou Abdoul Diop ◽  
Kora Hafiz Bete ◽  
Reine Kakpo ◽  
Carlos Ogouyandjou

AbstractIn this work, we present existence of mild solutions for partial integro-differential equations with state-dependent nonlocal local conditions. We assume that the linear part has a resolvent operator in the sense given by Grimmer. The existence of mild solutions is proved by means of Kuratowski’s measure of non-compactness and a generalized Darbo fixed point theorem in Fréchet space. Finally, an example is given for demonstration.


2001 ◽  
Vol 11 (03) ◽  
pp. 737-753 ◽  
Author(s):  
TATYANA LUZYANINA ◽  
KOEN ENGELBORGHS ◽  
DIRK ROOSE

In this paper we apply existing numerical methods for bifurcation analysis of delay differential equations with constant delay to equations with state-dependent delay. In particular, we study the computation, continuation and stability analysis of steady state solutions and periodic solutions. We collect the relevant theory and describe open theoretical problems in the context of bifurcation analysis. We present computational results for two examples and compare with analytical results whenever possible.


2008 ◽  
Vol 40 (02) ◽  
pp. 529-547
Author(s):  
Francisco J. Piera ◽  
Ravi R. Mazumdar ◽  
Fabrice M. Guillemin

In this paper we consider reflected diffusions with positive and negative jumps, constrained to lie in the nonnegative orthant of ℝ n . We allow for the drift and diffusion coefficients, as well as for the directions of reflection, to be random fields over time and space. We provide a boundary behavior characterization, generalizing known results in the nonrandom coefficients and constant directions of the reflection case. In particular, the regulator processes are related to semimartingale local times at the boundaries, and they are shown not to charge the times the process expends at the intersection of boundary faces. Using the boundary results, we extend the conditions for product-form distributions in the stationary regime to the case when the drift and diffusion coefficients, as well as the directions of reflection, are random fields over space.


Sign in / Sign up

Export Citation Format

Share Document