Random flights on regular graphs

1984 ◽  
Vol 16 (03) ◽  
pp. 618-637 ◽  
Author(s):  
Lajos Takács

Let K be a finite graph with vertex set V = {x 0, x 1, …, xσ –1} and automorphism group G. It is assumed that G acts transitively on V. We can imagine that the vertices of K represent σ cities and a traveler visits the cities in a series of random flights. The traveler starts at a given city and in each flight, independently of the past journey, chooses a city at random as the destination. Denote by vn (n = 1, 2, …) the location of the traveler at the end of the nth flight, and by v 0 the initial location. It is assumed that the transition probabilities P{vn = xj | vn –1 = xi }, xi ϵ V, xj ϵ V, do not depend on n and are invariant under the action of G on V. The main result of this paper consists in determining p(n), the probability that the traveler returns to the initial position at the end of the nth flight.

1984 ◽  
Vol 16 (3) ◽  
pp. 618-637 ◽  
Author(s):  
Lajos Takács

Let K be a finite graph with vertex set V = {x0, x1, …, xσ–1} and automorphism group G. It is assumed that G acts transitively on V. We can imagine that the vertices of K represent σ cities and a traveler visits the cities in a series of random flights. The traveler starts at a given city and in each flight, independently of the past journey, chooses a city at random as the destination. Denote by vn (n = 1, 2, …) the location of the traveler at the end of the nth flight, and by v0 the initial location. It is assumed that the transition probabilities P{vn = xj | vn–1 = xi}, xi ϵ V, xj ϵ V, do not depend on n and are invariant under the action of G on V. The main result of this paper consists in determining p(n), the probability that the traveler returns to the initial position at the end of the nth flight.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


1999 ◽  
Vol 09 (04n05) ◽  
pp. 471-493 ◽  
Author(s):  
LEONIDAS J. GUIBAS ◽  
JEAN-CLAUDE LATOMBE ◽  
STEVEN M. LAVALLE ◽  
DAVID LIN ◽  
RAJEEV MOTWANI

This paper addresses the problem of planning the motion of one or more pursuers in a polygonal environment to eventually "see" an evader that is unpredictable, has unknown initial position, and is capable of moving arbitrarily fast. This problem was first introduced by Suzuki and Yamashita. Our study of this problem is motivated in part by robotics applications, such as surveillance with a mobile robot equipped with a camera that must find a moving target in a cluttered workspace. A few bounds are introduced, and a complete algorithm is presented for computing a successful motion strategy for a single pursuer. For simply-connected free spaces, it is shown that the minimum number of pursuers required is Θ( lg  n). For multiply-connected free spaces, the bound is [Formula: see text] pursuers for a polygon that has n edges and h holes. A set of problems that are solvable by a single pursuer and require a linear number of recontaminations is shown. The complete algorithm searches a finite graph that is constructed on the basis of critical information changes. It has been implemented and computed examples are shown.


Author(s):  
Mahsa Mirzargar

Let G be a nite group. The power graph P(G) of a group G is the graphwhose vertex set is the group elements and two elements are adjacent if one is a power of the other. The commuting graph \Delta(G) of a group G, is the graph whose vertices are the group elements, two of them joined if they commute. When the vertex set is G-Z(G), this graph is denoted by \Gamma(G). Since the results based on the automorphism group of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism group of power graphs and commuting graphs obtained in the literature.


1964 ◽  
Vol 16 ◽  
pp. 485-489 ◽  
Author(s):  
J. W. Moon

The set of all adjacency-preserving automorphisms of the vertex set of a graph form a group which is called the (automorphism) group of the graph. In 1938 Frucht (2) showed that every finite group is isomorphic to the group of some graph. Since then Frucht, Izbicki, and Sabidussi have considered various other properties that a graph having a given group may possess. (For pertinent references and definitions not given here see Ore (4).) The object in this paper is to treat by similar methods a corresponding problem for a class of oriented graphs. It will be shown that a finite group is isomorphic to the group of some complete oriented graph if and only if it has an odd number of elements.


Author(s):  
I. H. Agustin ◽  
M. I. Utoyo ◽  
Dafik ◽  
M. Venkatachalam ◽  
Surahmat

A total k-labeling is a function fe from the edge set to first natural number ke and a function fv from the vertex set to non negative even number up to 2kv, where k=maxke,2kv. A vertex irregular reflexivek-labeling of a simple, undirected, and finite graph G is total k-labeling, if for every two different vertices x and x′ of G, wtx≠wtx′, where wtx=fvx+Σxy∈EGfexy. The minimum k for graph G which has a vertex irregular reflexive k-labeling is called the reflexive vertex strength of the graph G, denoted by rvsG. In this paper, we determined the exact value of the reflexive vertex strength of any graph with pendant vertex which is useful to analyse the reflexive vertex strength on sunlet graph, helm graph, subdivided star graph, and broom graph.


2019 ◽  
Vol 69 (3) ◽  
pp. 479-496 ◽  
Author(s):  
Alexander Rosa

AbstractLetGbe a graph with vertex-setV=V(G) and edge-setE=E(G). A 1-factorofG(also calledperfect matching) is a factor ofGof degree 1, that is, a set of pairwise disjoint edges which partitionsV. A 1-factorizationofGis a partition of its edge-setEinto 1-factors. For a graphGto have a 1-factor, |V(G)| must be even, and for a graphGto admit a 1-factorization,Gmust be regular of degreer, 1 ≤r≤ |V| − 1.One can find in the literature at least two extensive surveys [69] and [89] and also a whole book [90] devoted to 1-factorizations of (mainly) complete graphs.A 1-factorization ofGis said to beperfectif the union of any two of its distinct 1-factors is a Hamiltonian cycle ofG. An early survey on perfect 1-factorizations (abbreviated as P1F) of complete graphs is [83]. In the book [90] a whole chapter (Chapter 16) is devoted to perfect 1-factorizations of complete graphs.It is the purpose of this article to present what is known to-date on P1Fs, not only of complete graphs but also of other regular graphs, primarily cubic graphs.


Author(s):  
Xinlei Wang ◽  
Dein Wong ◽  
Fenglei Tian

Let [Formula: see text] be a finite field with [Formula: see text] elements, [Formula: see text] a positive integer, [Formula: see text] the semigroup of all [Formula: see text] upper triangular matrices over [Formula: see text] under matrix multiplication, [Formula: see text] the group of all invertible matrices in [Formula: see text], [Formula: see text] the quotient group of [Formula: see text] by its center. The one-divisor graph of [Formula: see text], written as [Formula: see text], is defined to be a directed graph with [Formula: see text] as vertex set, and there is a directed edge from [Formula: see text] to [Formula: see text] if and only if [Formula: see text], i.e. [Formula: see text] and [Formula: see text] are, respectively, a left divisor and a right divisor of a rank one matrix in [Formula: see text]. The definition of [Formula: see text] is motivated by the definition of zero-divisor graph [Formula: see text] of [Formula: see text], which has vertex set of all nonzero zero-divisors in [Formula: see text] and there is a directed edge from a vertex [Formula: see text] to a vertex [Formula: see text] if and only if [Formula: see text], i.e. [Formula: see text]. The automorphism group of zero-divisor graph [Formula: see text] of [Formula: see text] was recently determined by Wang [A note on automorphisms of the zero-divisor graph of upper triangular matrices, Lin. Alg. Appl. 465 (2015) 214–220.]. In this paper, we characterize the automorphism group of one-divisor graph [Formula: see text] of [Formula: see text], proving that [Formula: see text], where [Formula: see text] is the automorphism group of field [Formula: see text], [Formula: see text] is a direct product of some symmetric groups. Besides, an application of automorphisms of [Formula: see text] is given in this paper.


1992 ◽  
Vol 125 ◽  
pp. 141-150 ◽  
Author(s):  
Polly Wee Sy ◽  
Toshikazu Sunada

In this paper, we study some spectral properties of the discrete Schrödinger operator = Δ + q defined on a locally finite connected graph with an automorphism group whose orbit space is a finite graph.The discrete Laplacian and its generalization have been explored from many different viewpoints (for instance, see [2] [4]). Our paper discusses the discrete analogue of the results on the bottom of the spectrum established by T. Kobayashi, K. Ono and T. Sunada [3] in the Riemannian-manifold-setting.


10.37236/7294 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Mark E. Watkins

A graphical Frobenius representation (GFR) of a Frobenius (permutation) group $G$ is a graph $\Gamma$ whose automorphism group Aut$(\Gamma)$ acts as a Frobenius permutation group on the vertex set of $\Gamma$, that is, Aut$(\Gamma)$ acts vertex-transitively with the property that all nonidentity automorphisms fix either exactly one or zero vertices and there are some of each kind. The set $K$ of all fixed-point-free automorphisms together with the identity is called the kernel of $G$. Whenever $G$ is finite, $K$ is a regular normal subgroup of $G$ (F. G. Frobenius, 1901), in which case $\Gamma$ is a Cayley graph of $K$. The same holds true for all the infinite instances presented here.Infinite, locally finite, vertex-transitive graphs can be classified with respect to (i) the cardinality of their set of ends and (ii) their growth rate. We construct families of infinite GFRs for all possible combinations of these two properties. There exist infinitely many GFRs with polynomial growth of degree $d$ for every positive integer $d$, and there exist infinite families of GFRs of exponential growth, both $1$-ended and infinitely-ended, that underlie infinite chiral planar maps. There also exist GFRs of free products of finitely many finitely generated groups. Graphs of connectivity 1 having a Frobenius automorphism group are characterized.


Sign in / Sign up

Export Citation Format

Share Document