The Study of a Single Degree of Freedom System with Time Dependent Parameters

1967 ◽  
Vol 71 (678) ◽  
pp. 439-440 ◽  
Author(s):  
B. V. Dasarathy ◽  
P. Srinivasan

The equations of motion of many mechanical systems reduce to ordinary differential equations with time dependent parameters. A single degree of freedom system, with the damping and restoring forces varying with time according to the law … m (t+k)nhas been studied using the WKBJ approximation. The general solution of the differential equation can be used to arrive at the response of such time dependent systems, subjected to excitations which are specified to be of either deterministic or stochastic nature.

1997 ◽  
Vol 64 (1) ◽  
pp. 227-229 ◽  
Author(s):  
M. F. Beatty

Wilms (1995) has considered the plane motion of three lineal rigid bodies subject to linear damping over their length. He shows that these plane single-degree-of-freedom systems are governed by precisely the same fundamental differential equation. It is not unusual that several dynamical systems may be formally characterized by the same differential equation, but the universal differential equation for these systems is unusual because it is exactly the same equation for the three very different systems. It is shown here that these problems belong to a more general class of problems for which the differential equation is exactly the same for every lineal rigid body regardless of its geometry.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Bin Tang ◽  
M. J. Brennan

This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration.


1977 ◽  
Vol 99 (2) ◽  
pp. 449-455 ◽  
Author(s):  
A. Midha ◽  
A. G. Erdman ◽  
D. A. Frohrib

A new numerical procedure based on an iterative technique is progressively developed in this paper for obtaining an approximate particular solution from the equations of motion of an elastic linkage with small damping and at subresonant speeds. The method is introduced by employing a simple vibrating system, a single degree-of-freedom mass-dashpot-spring model under both harmonic forcing and periodic forcing. A harmonically excited two degree-of-freedom model is also solved by the suggested approach. Error functions are developed for each case to give an estimation of the order of error between the exact analytical solution and the approximate technique. The suggested technique is then extended to solve an elastic linkage problem where the uncoupled equations of motion are treated as a series of single degree-of-freedom problems and solved. These are retransformed into the physical coordinate system to obtain the particular solution. The first and second derivatives of the forcing functions (involving rigid-body inertia) are approximated utilizing the finite difference method.


1979 ◽  
Vol 101 (1) ◽  
pp. 138-148 ◽  
Author(s):  
A. Midha ◽  
A. G. Erdman ◽  
D. A. Frohrib

A new numerical algorithm, easily adaptable for computer simulation, is developed to approximate the transient response of a single degree-of-freedom vibrating system; governing differential equation is linear and second order with time-dependent and periodic coefficients. This is accomplished by first solving the classical linear single degree-of-freedom problem with constant coefficients. The system is excited by a periodic forcing function possessing a certain degree of smoothness. The integration terms in the solution are systematically expanded into two groups of terms: one consists of non-integral terms while the other contains only integral terms. The final integral terms are bounded. For certain combinations of frequency and damping, within the sub-resonant frequency range, the relative size of the integral terms are demonstrated to be small. The algebraic expansion (non-integral) terms then approximate the solution. The solution to a single degree-of-freedom system with time-dependent and periodic parameters is made possible by discretizing the forcing period into a number of intervals and assuming the system parameters as constant over each interval. The numerical algorithm is then employed to solve an elastic linkage problem via modal superposition. Convergence of the solution is verified by refining the number of intervals of discretization.


1965 ◽  
Vol 2 (01) ◽  
pp. 42-49
Author(s):  
Lewis Schneider ◽  
L. Grady Burton ◽  
Thomas Mahan

When towing submerged bodies such as sonar vehicles or oceanographic instrument packages, the tow cable may be subjected to severe loadings because of large-amplitude ship motions. These motions first cause the cable to become slack and subsequently subject it to impact stresses at the instant of tension recovery. A typical body, cable, and oscillating tow-point assemblage is idealized as a single-degree-of-freedom system and the dynamical equations of motion are solved over a broad range of forcing amplitudes and periods and system compliance. The effects of such parameters as body density and cable compliance in attenuating the dynamic stresses are discussed.


2018 ◽  
Vol 147 ◽  
pp. 05003
Author(s):  
Heri Setiawan ◽  
Muslim Muin

When a ship is moving through another ship moored nearby, hydrodynamic interactions between these ships result in movements of the moored vessel. The movement may occur as surge, sway, and/or yaw. When a ship is passing a moored vessel parallelly, this effect will give a dominant lateral force on the moored ship and response from this phenomenon will appear in a certain time. Only dynamic response due to sway force is considered in this study, the sway force shall be absorb by the breasting dolphin. 40,000 DWT shall be moored to the breasting dolphin. Three passing ships size are considered, the breasting dolphin shall be modeled as a single degree of freedom model. This model will be subjected to a force caused by parallel passing ship. The model is assumed to be in a state of quiet water, this assumption is taken so that the fluid does not provide additional force on the model. The SDOF system shall be analyzed using a computer program designed to solve an ordinary differential equation.


Sign in / Sign up

Export Citation Format

Share Document