The Axial Decay and Radial Spread of a Supersonic Jet Exhausting into Air at Rest

1961 ◽  
Vol 12 (2) ◽  
pp. 131-149 ◽  
Author(s):  
J. H. Frauenberger ◽  
J. G. Forbister

SummaryThe distribution of total pressure, stagnation temperature and gas velocity is determined for the subsonic region of a supersonic jet emerging from a solid propellant rocket motor into air at rest. Measurements of Pitot pressures in the supersonic flow region have shown that the flow follows the axis of an inclined nozzle within the order of accuracy of the measurements. Nozzle cone angle, and probably the expansion ratio, affect the jet distribution significantly.

Author(s):  
Tasneem Pervez ◽  
Omar S. Al-Abri ◽  
Sayyad Z. Qamar ◽  
Asiya M. Al-Busaidi

In the last decade, traditional tube expansion process has found an innovative application in oil and gas well drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to mono-diameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model which predicts the drawing force for expansion, the stress field in expanded and pre/post expanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration i.e. shape, size and angle was obtained which can be used to achieve larger in-situ expansion. It is found that mandrel with elliptical, hemispherical and curved conical shapes have minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10°. However, further manipulation of shape parameters of the circular cross section mandrel revealed an improved efficiency. The drawing force required for expansion reduces by 7% to 10% having minimum dissipated energy during expansion. It is also found that these cones yield less reduction in tube thickness after expansion, which results in higher post-expansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by 7%.


Sign in / Sign up

Export Citation Format

Share Document