The Effect of Base Bleed on the Flow behind a Two-Dimensional Model with a Blunt Trailing Edge

1967 ◽  
Vol 18 (3) ◽  
pp. 207-224 ◽  
Author(s):  
P. W. Bearman

SummaryThe effects of base bleed on the flow about a two-dimensional model with a blunt trailing edge were examined at Reynolds numbers, based on model base height, between 1·3×104 and 4·1×104. The ratio of boundary layer thickness at the trailing edge to half the model base height was approximately 0·4. Measurements were made of base pressure, vortex shedding frequency and the distance to vortex formation. With a sufficiently large bleed quantity the regular vortex street pattern disappeared and the base drag of the section was reduced to about a third of its value without bleed. The base pressure was found to vary linearly with the inverse of the vortex formation distance. Results of a previous splitter plate investigation were found to agree closely with those of the present experiments.

1981 ◽  
Vol 110 ◽  
pp. 273-292 ◽  
Author(s):  
F. Motallebi ◽  
J. F. Norbury

Experiments have been carried out to investigate the phenomenon of vortex shedding from the blunt trailing edge of an aerodynamic body in transonic and supersonic flow. The effect of a discharge of bleed air from a slot in the trailing edge has been included and the relationship between the vortex formation and base pressure has been considered.In transonic flow a small amount of bleed air was found to produce a rearward shift in the point of origin of the vortices with a consequent substantial increase in base pressure. The effect was less marked in supersonic flow. At higher rates of bleed two different regimes of vortex shedding were identified and increase in bleed rate caused a reduction in base pressure. For bleed rates giving near-maximum base pressure no vortex shedding occurred.


2007 ◽  
Vol 570 ◽  
pp. 177-215 ◽  
Author(s):  
SALEM BOUHAIRIE ◽  
VINCENT H. CHU

The heat transfer from the surface of a circular cylinder into a crossflow has been computed using a two-dimensional model, for a range of Reynolds numbers from Re=200 to 15550. The boundary-layer separation, the local and overall heat-transfer rates, the eddy- and flare-detachment frequencies and the width of the flares were determined from the numerical simulations. In this range of Reynolds numbers, the heat-transfer process is unsteady and is characterized by a viscous length scale that is inversely proportional to the square root of the Reynolds number. To ensure uniform numerical accuracy for all Reynolds numbers, the dimensions of the computational mesh were selected in proportion to this viscous length scale. The small scales were resolved by at least three nodes within the boundary layers. The frequency of the heat flares increases, and the width of each flare decreases, with the Reynolds number, in proportion to the viscous time and length scales. Despite the presence of three-dimensional structures for the range of Reynolds numbers considered, the two-dimensional model captures the unsteady processes and produced results that were consistent with the available experimental data. It correctly simulated the overall, the front-stagnation and the back-to-total heat-transfer rates.


1997 ◽  
Vol 330 ◽  
pp. 85-112 ◽  
Author(s):  
N. TOMBAZIS ◽  
P. W. BEARMAN

Experiments have been carried out to study the three-dimensional characteristics of vortex shedding from a half-ellipse shape with a blunt trailing edge. In order to control the occurrence of vortex dislocations, the trailing edges of the models used were constructed with a series of periodic waves across their spans. Flow visualization was carried out in a water tunnel at a Reynolds number of 2500, based on trailing-edge thickness. A number of shedding modes were observed and the sequence of mode transitions recorded. Quantitative data were obtained from wind tunnel measurements performed at a Reynolds number of 40000. Two shedding frequencies were recorded with the higher frequency occurring at spanwise positions coinciding with minima in the chord. At these same positions the base pressure was lowest and the vortex formation length longest. Arguments are put forward to explain these observations. It is shown that the concept of a universal Strouhal number holds, even when the flow is three-dimensional. The spanwise variation in time-average base pressure is predicted using the estimated amount of time the flow spends at the two shedding frequencies.


2013 ◽  
Vol 719 ◽  
Author(s):  
Darren G. Crowdy

AbstractA Janus swimmer is any force-free, torque-free organism, particle or micro-robot operating at low Reynolds numbers and having contiguous regions of its boundary on which different boundary conditions are in play. In this paper we study a ‘slip–stick’ Janus swimmer theoretically within a two-dimensional model. The boundary of the swimmer is split into two zones: its motion is driven by an imposed tangential stress on a portion of the boundary with the complement taken to be a no-slip surface. The Stokes flow generated by the swimmer, and its swimming speed, are determined in closed analytical form as a function of the angle over which the stress actuation is active.


2002 ◽  
Vol 61 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Eric Tafani ◽  
Lionel Souchet

This research uses the counter-attitudinal essay paradigm ( Janis & King, 1954 ) to test the effects of social actions on social representations. Thus, students wrote either a pro- or a counter-attitudinal essay on Higher Education. Three forms of counter-attitudinal essays were manipulated countering respectively a) students’ attitudes towards higher education; b) peripheral beliefs or c) central beliefs associated with this representation object. After writing the essay, students expressed their attitudes towards higher education and evaluated different beliefs associated with it. The structural status of these beliefs was also assessed by a “calling into question” test ( Flament, 1994a ). Results show that behavior challenging either an attitude or peripheral beliefs induces a rationalization process, giving rise to minor modifications of the representational field. These modifications are only on the social evaluative dimension of the social representation. On the other hand, when the behavior challenges central beliefs, the same rationalization process induces a cognitive restructuring of the representational field, i.e., a structural change in the representation. These results and their implications for the experimental study of representational dynamics are discussed with regard to the two-dimensional model of social representations ( Moliner, 1994 ) and rationalization theory ( Beauvois & Joule, 1996 ).


Sign in / Sign up

Export Citation Format

Share Document