Two-dimensional simulation of unsteady heat transfer from a circular cylinder in crossflow

2007 ◽  
Vol 570 ◽  
pp. 177-215 ◽  
Author(s):  
SALEM BOUHAIRIE ◽  
VINCENT H. CHU

The heat transfer from the surface of a circular cylinder into a crossflow has been computed using a two-dimensional model, for a range of Reynolds numbers from Re=200 to 15550. The boundary-layer separation, the local and overall heat-transfer rates, the eddy- and flare-detachment frequencies and the width of the flares were determined from the numerical simulations. In this range of Reynolds numbers, the heat-transfer process is unsteady and is characterized by a viscous length scale that is inversely proportional to the square root of the Reynolds number. To ensure uniform numerical accuracy for all Reynolds numbers, the dimensions of the computational mesh were selected in proportion to this viscous length scale. The small scales were resolved by at least three nodes within the boundary layers. The frequency of the heat flares increases, and the width of each flare decreases, with the Reynolds number, in proportion to the viscous time and length scales. Despite the presence of three-dimensional structures for the range of Reynolds numbers considered, the two-dimensional model captures the unsteady processes and produced results that were consistent with the available experimental data. It correctly simulated the overall, the front-stagnation and the back-to-total heat-transfer rates.

AIChE Journal ◽  
2011 ◽  
Vol 58 (8) ◽  
pp. 2545-2556 ◽  
Author(s):  
Cyril Caliot ◽  
Gilles Flamant ◽  
Giorgos Patrianakos ◽  
Margaritis Kostoglou ◽  
Athanasios G. Konstandopoulos

1977 ◽  
Vol 79 (3) ◽  
pp. 609-624 ◽  
Author(s):  
R. D. Mills

Steady two-dimensional viscous motion within a circular cylinder generated by (a) the rotation of part of the cylinder wall and (b) fluid entering and leaving through slots in the wall is considered. Studied in particular are moving-surface problems with continuous and discontinuous surface speeds, simple inflow–outflow problems and the impinging-jet problem within a circle. The analytical solutions at zero Reynolds number are given for the last two types of problem. Numerical results are obtained at various Reynolds numbers from the integral representation of the solution. At zero Reynolds number this approach involves a quadrature around the circumference of the cylinder. At other Reynolds numbers it involves an iterative–integral technique based on the use of the ‘clamped-plate’ biharmonic Green's function.


1968 ◽  
Vol 32 (1) ◽  
pp. 21-28 ◽  
Author(s):  
C. A. Hieber ◽  
B. Gebhart

Theoretical results are obtained for forced heat convection from a circular cylinder at low Reynolds numbers. Consideration is given to the cases of a moderate and a large Prandtl number, the analysis in each case being based upon the method of matched asymptotic expansions. Comparison between the moderate Prandtl number theory and known experimental results indicates excellent agreement; no relevant experimental work has been found for comparison with the large Prandtl number theory.


1986 ◽  
Vol 52 (476) ◽  
pp. 1734-1740 ◽  
Author(s):  
Hiroshi HAYASAKA ◽  
Kazuhiko KUDO ◽  
Hiroshi TANIGUCHI ◽  
Ichiro NAKAMACHI ◽  
Toshiaki OMORI ◽  
...  

1989 ◽  
Vol 55 (516) ◽  
pp. 2457-2464 ◽  
Author(s):  
Kenjiro SUZUKI ◽  
Tetsuro HAYASHI ◽  
Matthew J. SCHUERGER ◽  
Atsuo NISHIHARA ◽  
Masakatsu HAYASHI

1967 ◽  
Vol 18 (3) ◽  
pp. 207-224 ◽  
Author(s):  
P. W. Bearman

SummaryThe effects of base bleed on the flow about a two-dimensional model with a blunt trailing edge were examined at Reynolds numbers, based on model base height, between 1·3×104 and 4·1×104. The ratio of boundary layer thickness at the trailing edge to half the model base height was approximately 0·4. Measurements were made of base pressure, vortex shedding frequency and the distance to vortex formation. With a sufficiently large bleed quantity the regular vortex street pattern disappeared and the base drag of the section was reduced to about a third of its value without bleed. The base pressure was found to vary linearly with the inverse of the vortex formation distance. Results of a previous splitter plate investigation were found to agree closely with those of the present experiments.


Sign in / Sign up

Export Citation Format

Share Document