The Accuracy of Radiocarbon Dates

Antiquity ◽  
1963 ◽  
Vol 37 (147) ◽  
pp. 213-219 ◽  
Author(s):  
W. F. Libby

The first test of the accuracy of dates obtained by the radiocarbon technique was made by determining whether dates so obtained agreed with the historical dates for materials of known age (n. 1). The validity of the radiocarbon method continues to be an important question, especially in the light of the numerous results that have been accumulated and the greater precision of the technique during the past few years (n. 2).The radiocarbon content of the biosphere depends on three supposedly independent geophysical quantities: (i) the average cosmic ray intensity over a period of 8000 years (the average life of radiocarbon) as measured in our solar system but outside the earth's magnetic field (n. 1); (ii) the magnitude (but not the orientation, because of the relatively rapid mixing over the earth's surface) of the magnetic field in the vicinity of the earth, averaged over the same period (n. 1,3); and (iii) the degree of mixing of the oceans during the same period (n. 1). The question of the accuracy of radiocarbon dates therefore is of interest to geophysicists in general as well as to the archaeologists, geologists and historians who use the dates.Previous workers in this area (n. 1, 2) have reported some discrepancies, and it is the purpose here to consider the matter further.

1963 ◽  
Vol 58 ◽  
pp. 8-13 ◽  
Author(s):  
J. C. Belshé ◽  
K. Cook ◽  
R. M. Cook

Many clays and stones contain particles of magnetic oxides of iron. These particles, if heated above their Curie points, which range up to 670° C., lose whatever magnetism they have; and when they cool back through their Curie points, they acquire a new ‘thermoremanent’ magnetization under the influence of the surrounding magnetic field, which generally is the magnetic field of the earth. That field is changing continuously, both in direction and intensity, and the course of its secular change is not yet understood; the change is compound, one factor being the main field, which may be fairly stationary over long periods, and the other being the numerous minor regional fields, which move and alter relatively quickly and largely determine the local variations in the magnetic field. So it is dangerous to extrapolate values for local variations either for more than a century or two in time or for more than five to ten degrees in space. At present the best hope for discovering past changes in the earth's field is from the thermoremanent magnetization of burnt clays and stones, where the date of the burning is reasonably closely fixed from other evidence. Such knowledge is obviously of interest to geophysicists, but for periods and places where the past course of the earth's field has been ascertained, archaeomagnetism—that is the study of the thermoremanent magnetization of archaeological remains—can help archaeologists too. It should be evident on reflection that if an archaeomagnetic specimen is to be useful certain requirements are necessary. First, the locality where it was magnetized must be known. Secondly, for the study of direction, the sample's orientation at the time when it was magnetized must be recorded, so that the inclination [or dip] and declination [or compass bearing] of its own thermoremanent magnetism can be related to the horizontal and to true North respectively.


1968 ◽  
Vol 46 (10) ◽  
pp. S966-S969 ◽  
Author(s):  
V. L. Patel ◽  
R. L. Chasson

Observations by IMP-1 satellite have established that the interplanetary magnetic field is divided into sectors of opposing polarity. These observations have been confirmed by observations with IMP-2 and Mariner 4. The effect of this sector structure on the cosmic-ray intensity observed on the earth has been studied using daily averages of pressure-corrected neutron monitor data from several locations. These data have been analyzed using the method of superposition of epochs, beginning at the edge of the observed sector. The results indicate periodic variations of 6–8-day periods and 0.5 to 1.0% amplitude in cosmic-ray intensity, associated with the passage of positive and negative sectors moving past the earth, including a weak recurrence at 27 days. Theoretical implications of these observations are discussed.


1968 ◽  
Vol 46 (10) ◽  
pp. S642-S645 ◽  
Author(s):  
H. Okuda ◽  
Y. Tanaka

An estimate of the galactic magnetic field is obtained by combining new results in the cosmic-ray electron spectrum and the recent radio data. The lower and upper limits of the magnetic field in the galactic disk are derived from two alternative models of field configuration; i.e. (0.5–1.0) × 10−5 gauss near the solar system and (1.0–2.0) × 10−5 gauss near the galactic center, respectively. The magnetic field in the halo is estimated to be larger than 2.5 × 10−6 gauss.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document