scholarly journals A note on generalised linear complementarity problems

1978 ◽  
Vol 18 (2) ◽  
pp. 161-168 ◽  
Author(s):  
J. Parida ◽  
B. Sahoo

Given an n × n matrix A, an n-dimensional vector q, and a closed, convex cone S of Rn, the generalized linear complementarity problem considered here is the following: find a z ∈ Rn such thatwhere s* is the polar cone of S. The existence of a solution to this problem for arbitrary vector q has been established both analytically and constructively for several classes of matrices A. In this note, a new class of matrices, denoted by J, is introduced. A is a J-matrix ifThe new class can be seen to be broader than previously studied classes. We analytically show that for any A in this class, a solution to the above problem exists for arbitrary vector q. This is achieved by using a result on variational inequalities.

1976 ◽  
Vol 14 (1) ◽  
pp. 129-136 ◽  
Author(s):  
J. Parida ◽  
B. Sahoo

The complex nonlinear complementarity problem considered here is the following: find z such thatwhere S is a polyhedral cone in Cn, S* the polar cone, and g is a mapping from Cn into itself. We study the extent to which the existence of a z ∈ S with g(z) ∈ S* (feasible point) implies the existence of a solution to the nonlinear complementarity problem, and extend, to nonlinear mappings, known results in the linear complementarity problem on positive semi-definite matrices.


1978 ◽  
Vol 19 (1) ◽  
pp. 51-58
Author(s):  
J. Parida ◽  
B. Sahoo

Given a closed, convex cone S, in Rn, its polar S* and a mapping g from Rn into itself, the generalized nonlinear complementarity problem is to find a z ∈ Rn such thatMany existence theorems for the problem have been established under varying conditions on g. We introduce new mappings, denoted by J(S)-functions, each of which is used to guarantee the existence of a solution to the generalized problem under certain coercivity conditions on itself. A mapping g:S → Rn is a J(S)-function ifimply that z = 0. It is observed that the new class of functions is a broader class than the previously studied ones.


1978 ◽  
Vol 19 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Sribatsa Nanda ◽  
Sudarsan Nanda

In this paper we study the existence and uniqueness of solutions for the following complex nonlinear complementarity problem: find z ∈ S such that g(z) ∈ S* and re(g(z), z) = 0, where S is a closed convex cone in Cn, S* the polar cone, and g is a continuous function from Cn into itself. We show that the existence of a z ∈ S with g(z) ∈ int S* implies the existence of a solution to the nonlinear complementarity problem if g is monotone on S and the solution is unique if g is strictly monotone. We also show that the above problem has a unique solution if the mapping g is strongly monotone on S.


1989 ◽  
Vol 39 (1) ◽  
pp. 15-20 ◽  
Author(s):  
M. Seetharama Gowda

In this article we show that, under suitable conditions a quadratic functional attains its minimum on a closed convex cone (in a finite dimensional real Hilbert space) whenever it is bounded below on the cone. As an application, we solve Generalised Linear Complementarity Problems over closed convex cones.


2021 ◽  
Vol 37 (37) ◽  
pp. 127-155
Author(s):  
K.C. Sivakumar ◽  
Sushmitha Parameswaran ◽  
Megan Wendler

A real square matrix $A$ is called a $Q$-matrix if the linear complementarity problem LCP$(A,q)$ has a solution for all $q \in \mathbb{R}^n$. This means that for every vector $q$ there exists a vector $x$ such that $x \geq 0, y=Ax+q\geq 0$, and $x^Ty=0$. A well-known result of Karamardian states that if the problems LCP$(A,0)$ and LCP$(A,d)$ for some $d\in \mathbb{R}^n, d >0$ have only the zero solution, then $A$ is a $Q$-matrix. Upon relaxing the requirement on the vectors $d$ and $y$ so that the vector $y$ belongs to the translation of the nonnegative orthant by the null space of $A^T$, $d$ belongs to its interior, and imposing the additional condition on the solution vector $x$ to be in the intersection of the range space of $A$ with the nonnegative orthant, in the two problems as above, the authors introduce a new class of matrices called Karamardian matrices, wherein these two modified problems have only zero as a solution. In this article, a systematic treatment of these matrices is undertaken. Among other things, it is shown how Karamardian matrices have properties that are analogous to those of $Q$-matrices. A subclass of a recently introduced notion of $P_{\#}$-matrices is shown to possess the Karamardian property, and for this reason we undertake a thorough study of $P_{\#}$-matrices and make some fundamental contributions.


1973 ◽  
Vol 9 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Bertram Mond

The complex linear complementarity problem considered here is the following: Find z such thatwhere S is a polyhedral convex cone in Cp, S* the polar cone, M ∈ Cp×p and q ∈ Cp.Generalizing earlier results in real and complex space, it is shown that if M satisfies RezHMz ≥ 0 for all z ∈ Cp and if the set satisfying Mz + q ∈ S*, z ∈ S is not empty, then a solution to the complex linear complementarity problem exists. If RezHMz > 0 unless z = 0, then a solution to this problem always exists.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yamna Achik ◽  
Asmaa Idmbarek ◽  
Hajar Nafia ◽  
Imane Agmour ◽  
Youssef El foutayeni

The linear complementarity problem is receiving a lot of attention and has been studied extensively. Recently, El foutayeni et al. have contributed many works that aim to solve this mysterious problem. However, many results exist and give good approximations of the linear complementarity problem solutions. The major drawback of many existing methods resides in the fact that, for large systems, they require a large number of operations during each iteration; also, they consume large amounts of memory and computation time. This is the reason which drives us to create an algorithm with a finite number of steps to solve this kind of problem with a reduced number of iterations compared to existing methods. In addition, we consider a new class of matrices called the E-matrix.


2012 ◽  
Vol 9 (10) ◽  
pp. 958-961
Author(s):  
Joana Reis ◽  
Catarina Oliveira ◽  
Nuno Milhazes ◽  
Dolores Vina ◽  
Fernanda Borges

2012 ◽  
Vol 9 (10) ◽  
pp. 958-961 ◽  
Author(s):  
Joana Reis ◽  
Catarina Oliveira ◽  
Nuno Milhazes ◽  
Dolores Vina ◽  
Fernanda Borges

Sign in / Sign up

Export Citation Format

Share Document