scholarly journals Large algebraic theories with small algebras

1978 ◽  
Vol 19 (3) ◽  
pp. 371-380 ◽  
Author(s):  
Jan Reiterman

The aim of the paper is to study the interrelation between several natural smallness conditions on an algebraic theory with a proper class of operations. The conditions concern the existence of sets of data determining algebras, homomorphisms, subalgebras, and congruences.

Author(s):  
Richard Garner

Abstract It is well established that equational algebraic theories and the monads they generate can be used to encode computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic theory $\mathbb{T}$ – i.e., models in the opposite category $\mathcal{S}\mathrm{et}^{\mathrm{op}}$ – provide a suitable environment for evaluating the computational effects encoded by $\mathbb{T}$ . As already noted by Power and Shkaravska, taking comodels yields a functor from accessible monads to accessible comonads on $\mathcal{S}\mathrm{et}$ . In this paper, we show that this functor is part of an adjunction – the “costructure–cosemantics adjunction” of the title – and undertake a thorough investigation of its properties. We show that, on the one hand, the cosemantics functor takes its image in what we term the presheaf comonads induced by small categories; and that, on the other, costructure takes its image in the presheaf monads induced by small categories. In particular, the cosemantics comonad of an accessible monad will be induced by an explicitly-described category called its behaviour category that encodes the static and dynamic properties of the comodels. Similarly, the costructure monad of an accessible comonad will be induced by a behaviour category encoding static and dynamic properties of the comonad coalgebras. We tie these results together by showing that the costructure–cosemantics adjunction is idempotent, with fixpoints to either side given precisely by the presheaf monads and comonads. Along the way, we illustrate the value of our results with numerous examples drawn from computation and mathematics.


2007 ◽  
Vol 2007 ◽  
pp. 1-71 ◽  
Author(s):  
S. E. Rodabaugh

This paper deals with a broad question—to what extent is topology algebraic—using two specific questions: (1) what are the algebraic conditions on the underlying membership lattices which insure that categories for topology and fuzzy topology are indeed topological categories; and (2) what are the algebraic conditions which insure that algebraic theories in the sense of Manes are a foundation for the powerset theories generating topological categories for topology and fuzzy topology? This paper answers the first question by generalizing the Höhle-Šostak foundations for fixed-basis lattice-valued topology and the Rodabaugh foundations for variable-basis lattice-valued topology using semi-quantales; and it answers the second question by giving necessary and sufficient conditions under which certain theories—the very ones generating powerset theories generating (fuzzy) topological theories in the sense of this paper—are algebraic theories, and these conditions use unital quantales. The algebraic conditions answering the second question are much stronger than those answering the first question. The syntactic benefits of having an algebraic theory as a foundation for the powerset theory underlying a (fuzzy) topological theory are explored; the relationship between these two specific questions is discussed; the role of pseudo-adjoints is identified in variable-basis powerset theories which are algebraically generated; the relationships between topological theories in the sense of Adámek-Herrlich-Strecker and topological theories in the sense of this paper are fully resolved; lower-image operators introduced for fixed-basis mathematics are completely described in terms of standard image operators; certain algebraic theories are given which determine powerset theories determining a new class of variable-basis categories for topology and fuzzy topology using new preimage operators; and the theories of this paper are undergirded throughout by several extensive inventories of examples.


1978 ◽  
Vol 30 (02) ◽  
pp. 231-237
Author(s):  
J. R. Isbell ◽  
M. I. Klun ◽  
S. H. Schanuel

This paper concerns relative complexity of an algebraic theory T and its affine part A, primarily for theories TR of modules over a ring R. TR, AR and R itself are all, or none, finitely generated or finitely related. The minimum number of relations is the same for T R and AR. The minimum number of generators is a very crude invariant for these theories, being 1 for AR if it is finite, and 2 for TR if it is finite (and 1 ≠ 0 in R). The minimum arity of generators is barely less crude: 2 for TR} and 2 or 3 for AR (1 ≠ 0). AR is generated by binary operations if and only if R admits no homomorphism onto Z2.


1993 ◽  
Vol 3 (1) ◽  
pp. 63-92
Author(s):  
Adam Obtułowicz

We present an algebraic approach to the syntax and semantics of Martin-Löf type theory and the calculus of constructions developed by T. Coquand and G. Huet. In our approach, models of this theory and this calculus are treated as three-sorted partial algebras, called ITSΠ-structures, described by essentially algebraic theories. We give a proof that derived statements of Martin-Löf type theory hold in appropriate ITSΠ-structures. In this proof, a formal translation from the language of terms and types into the language of terms of an appropriate essentially algebraic theory of ITSΠ-structures is used. A straightforward set-theoretic construction of ITSΠ-structures that are models of Martin-Löf type theory is demonstrated. We present a construction of a recursive ITSΠ-structure(i.e. its partial and total operations are recursive functions over some alphabet) that is a model of the calculus of constructions and demonstrates the decidability of this calculus.


1986 ◽  
Vol 9 (3) ◽  
pp. 343-370
Author(s):  
Eric G. Wagner

The aim of this paper is to model recursive types, equational types, and elementary programming control constructs (such as conditionals and while-do) in one, comparatively simple, algebraic framework, that can be used for theoretical studies and as a basis for data type and program specification. To this end we introduce a new kind of algebraic theory, the RV-theory. We give simple examples of the use of such theories for data type specification. We provide a mathematical semantics for these specifications that extends the initial algebra semantics for equational specification to include recursive types.


Author(s):  
Marc Bezem ◽  
Thierry Coquand ◽  
Peter Dybjer ◽  
Martín Escardó

Abstract We give a syntax independent formulation of finitely presented generalized algebraic theories as initial objects in categories of categories with families (cwfs) with extra structure. To this end, we simultaneously define the notion of a presentation Σ of a generalized algebraic theory and the associated category CwFΣ of small cwfs with a Σ-structure and cwf-morphisms that preserve Σ-structure on the nose. Our definition refers to the purely semantic notion of uniform family of contexts, types, and terms in CwFΣ. Furthermore, we show how to syntactically construct an initial cwf with a Σ-structure. This result can be viewed as a generalization of Birkhoff’s completeness theorem for equational logic. It is obtained by extending Castellan, Clairambault, and Dybjer’s construction of an initial cwf. We provide examples of generalized algebraic theories for monoids, categories, categories with families, and categories with families with extra structure for some type formers of Martin-Löf type theory. The models of these are internal monoids, internal categories, and internal categories with families (with extra structure) in a small category with families. Finally, we show how to extend our definition to some generalized algebraic theories that are not finitely presented, such as the theory of contextual cwfs.


1982 ◽  
Vol 5 (2) ◽  
pp. 171-186
Author(s):  
Stephen L. Bloom
Keyword(s):  

A review is given of some of the late C.C. Elgot’s ideas on the syntax and semantics of monadic flowchart algorithms. In particular, the motivation for his “iterative algebraic theories” is explained.


1999 ◽  
Vol 65 (1-2) ◽  
pp. 54-76 ◽  
Author(s):  
Yves Diers

Sign in / Sign up

Export Citation Format

Share Document