scholarly journals A farthest-point characterisation of the relative Chebyshev centre

1996 ◽  
Vol 54 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R. Huotari ◽  
M.P. Prophet ◽  
J. Shi

We characterise the relative Chebyshev centre of a compact subsetFof a real Banach space in terms of the Gateaux derivative of the distance to farthest points. We present a relative-Chebyshev-centre characterisation of Hilbert space. In Hilbert space we show that the relative Chebyshev centre is in the closed convex hull of the metric projection ofF, and we estimate the relative Chebyshev radius ofF.

2014 ◽  
Vol 58 (2) ◽  
pp. 441-444
Author(s):  
Surjit Singh Khurana

AbstractLet (E, ℱ) be a weakly compactly generated Frechet space and let ℱ0 be another weaker Hausdorff locally convex topology on E. Let X be an ℱ-bounded compact subset of (E, ℱ0). The ℱ0-closed convex hull of X in E is then ℱ0-compact. We also give a new proof, without using Riemann–Lebesgue-integrable (Birkoff-integrable) functions, with the result that if (E, ∥ · ∥) is any Banach space and ℱ0 is fragmented by ∥ · ∥, then the same result holds. Furthermore, the closure of the convex hull of X in ℱ0-topology and in the original topology of E is the same.


2005 ◽  
Vol 71 (1) ◽  
pp. 107-111
Author(s):  
Fathi B. Saidi

In this paper we adopt the notion of orthogonality in Banach spaces introduced by the author in [6]. There, the author showed that in any two-dimensional subspace F of E, every nonzero element admits at most one orthogonal direction. The problem of existence of such orthogonal direction was not addressed before. Our main purpose in this paper is the investigation of this problem in the case where E is a real Banach space. As a result we obtain a characterisation of Hilbert spaces stating that, if in every two-dimensional subspace F of E every nonzero element admits an orthogonal direction, then E is isometric to a Hilbert space. We conclude by presenting some open problems.


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter treats results on ε‎-Fréchet differentiability of Lipschitz functions in asymptotically smooth spaces. These results are highly exceptional in the sense that they prove almost Frechet differentiability in some situations when we know that the closed convex hull of all (even almost) Fréchet derivatives may be strictly smaller than the closed convex hull of the Gâteaux derivatives. The chapter first presents a simple proof of an almost differentiability result for Lipschitz functions in asymptotically uniformly smooth spaces before discussing the notion of asymptotic uniform smoothness. It then proves that in an asymptotically smooth Banach space X, any finite set of real-valued Lipschitz functions on X has, for every ε‎ > 0, a common point of ε‎-Fréchet differentiability.


2012 ◽  
Vol 20 (1) ◽  
pp. 329-344
Author(s):  
Sheng Hua Wang ◽  
Sun Young Cho ◽  
Xiao Long Qin

Abstract The purpose of this paper is to consider the problem of approximating zero points of accretive operators. We introduce and analysis Mann-type iterative algorithm with errors and Halpern-type iterative algorithms with errors. Weak and strong convergence theorems are established in a real Banach space. As applications, we consider the problem of approximating a minimizer of a proper lower semicontinuous convex function in a real Hilbert space


Author(s):  
C. Franchetti ◽  
P. L. Papini

SynopsisGiven a Banach space X, we investigate the behaviour of the metric projection PF onto a subset F with a bounded complement.We highlight the special role of points at which d(x, F) attains a maximum. In particular, we consider the case of X as a Hilbert space: this case is related to the famous problem of the convexity of Chebyshev sets.


2002 ◽  
Vol 133 (3) ◽  
pp. 515-530 ◽  
Author(s):  
GUSTAVO A. MUÑOZ ◽  
YANNIS SARANTOPOULOS

In this work we generalize Markov's inequality for any derivative of a polynomial on a real Hilbert space and provide estimates for the second and third derivatives of a polynomial on a real Banach space. Our result on a real Hilbert space answers a question raised by L. A. Harris in his commentary on problem 74 in the Scottish Book [20]. We also provide generalizations of previously obtained inequalities of the Bernstein and Markov-type for polynomials with curved majorants on a real Hilbert space.


2005 ◽  
Vol 71 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Pradipta Bandyopadhyay ◽  
S. Dutta

In this paper, we consider farthest points and the farthest distance map of a closed bounded set in a Banach space. We show, inter alia, that a strictly convex Banach space has the Mazur intersection property for weakly compact sets if and only if every such set is the closed convex hull of its farthest points, and recapture a classical result of Lau in a broader set-up. We obtain an expression for the subdifferential of the farthest distance map in the spirit of Preiss' Theorem which in turn extends a result of Westphal and Schwartz, showing that the subdifferential of the farthest distance map is the unique maximal monotone extension of a densely defined monotone operator involving the duality map and the farthest point map.


1967 ◽  
Vol 7 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Sadayuki Yamamuro

Let E be a real Banach space. The set of all continuous linear mappings of E into E is a Banach algebra under the usual algebraic operations and the operator bound as norm. We denote this Banach algebra by ℒ, if E is a separate Hilbert space.


2020 ◽  
Vol 63 (2) ◽  
pp. 475-496
Author(s):  
T. A. Abrahamsen ◽  
R. Haller ◽  
V. Lima ◽  
K. Pirk

AbstractA Δ-point x of a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 from x. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations, x is a Daugavet point. A Banach space X has the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same in L1-spaces, in L1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the closed convex hull of its Δ-points. This gives rise to a new diameter-two property that we call the convex diametral diameter-two property. We show that all C(K) spaces, K infinite compact Hausdorff, as well as all Müntz spaces have this property. Moreover, we show that this property is stable under absolute sums.


Author(s):  
S. Hejazian ◽  
A. Niknam ◽  
S. Shadkam

We study the farthest point mapping in a -normed space in virtue of subdifferential of , where is a weakly sequentially compact subset of . We show that the set of all points in which have farthest point in contains a dense subset of .


Sign in / Sign up

Export Citation Format

Share Document