scholarly journals On continuity and selections of multifunctions

2002 ◽  
Vol 65 (3) ◽  
pp. 407-422
Author(s):  
Pandelis Dodos

The notions of a Baire-1 and a weak Baire-1 multifunction are defined and a striking analogy between Baire-1 multifunctions and classical Baire-1 functions is established. A selection theorem is presented which asserts that if X is a metrisable space, Y a Polish space and F: X → 2Y/{∅} a closed-valued, weak Baire-1 multifunction, then F admits a Baire-1 selection. Using the machinery developed we prove that if X is a Banach space with separable dual, then every weak* usco, defined on a completely metrisable space Z, which values are weakly* compact subsets of the dual, is norm lower semicontinuous on a dense Gδ set.

2018 ◽  
Vol 7 (2) ◽  
pp. 197-209
Author(s):  
Pascal Gourdel ◽  
Nadia Mâagli

AbstractIn the spirit of Michael’s selection theorem [6, Theorem 3.1”’], we consider a nonempty convex-valued lower semicontinuous correspondence {\varphi:X\to 2^{Y}}. We prove that if φ has either closed or finite-dimensional images, then there admits a continuous single-valued selection, where X is a metric space and Y is a Banach space. We provide a geometric and constructive proof of our main result based on the concept of peeling introduced in this paper.


2013 ◽  
Vol 56 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Lixin Cheng ◽  
Zhenghua Luo ◽  
Yu Zhou

AbstractIn this note, we first give a characterization of super weakly compact convex sets of a Banach space X: a closed bounded convex set K ⊂ X is super weakly compact if and only if there exists a w* lower semicontinuous seminorm p with p ≥ σK ≌ supxєK 〈.,x〉 such that p2 is uniformly Fréchet differentiable on each bounded set of X*. Then we present a representation theoremfor the dual of the semigroup swcc(X) consisting of all the nonempty super weakly compact convex sets of the space X.


Author(s):  
Dave Wilkins

In this paper, we introduce weakly compact version of the weakly countably determined (WCD) property, the strongWCD(SWCD) property. A Banach spaceXis said to beSWCDif there s a sequence (An) of weak∗compact subsets ofX∗∗such that ifK⊂Xis weakly compact, there is an(nm)⊂Nsuch thatK⊂⋂m=1∞Anm⊂X. In this case, (An) is called a strongly determining sequence forX. We show thatSWCG⇒SWCDand that the converse does not hold in general. In fact,Xis a separableSWCDspace if and only if (X, weak) is anℵ0-space. Usingc0for an example, we show how weakly compact structure theorems may be used to construct strongly determining sequences.


1964 ◽  
Vol 16 ◽  
pp. 204-206 ◽  
Author(s):  
Robert C. James

The purpose of this paper is to develop characterizations of weakly compact subsets of a Banach space in terms of separation properties. The sets A and B are said to be separated by a hyperplane H if A is contained in one of the two closed half-spaces determined by H, and B is contained in the other; A and B are strictly separated by H if A is contained in one of the two open half-spaces determined by H, and B is contained in the other. The following are known to be true for locally convex topological linear spaces.


1993 ◽  
Vol 35 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Denny H. Leung

A Banach space E is said to have Property (w) if every operator from E into E' is weakly compact. This property was introduced by E. and P. Saab in [9]. They observe that for Banach lattices, Property (w) is equivalent to Property (V*), which in turn is equivalent to the Banach lattice having a weakly sequentially complete dual. Thus the following question was raised in [9].Does every Banach space with Property (w) have a weakly sequentially complete dual, or even Property (V*)?In this paper, we give two examples, both of which answer the question in the negative. Both examples are James type spaces considered in [1]. They both possess properties stronger than Property (w). The first example has the property that every operator from the space into the dual is compact. In the second example, both the space and its dual have Property (w). In the last section we establish some partial results concerning the problem (also raised in [9]) of whether (w) passes from a Banach space E to C(K, E).


1999 ◽  
Vol 42 (2) ◽  
pp. 139-148 ◽  
Author(s):  
José Bonet ◽  
Paweł Dománski ◽  
Mikael Lindström

AbstractEvery weakly compact composition operator between weighted Banach spaces of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.


1988 ◽  
Vol 31 (1) ◽  
pp. 121-128 ◽  
Author(s):  
R. R. Phelps

AbstractThe Bishop-Phelps theorem guarantees the existence of support points and support functionals for a nonempty closed convex subset of a Banach space; equivalently, it guarantees the existence of subdifferentials and points of subdifferentiability of a proper lower semicontinuous convex function on a Banach space. In this note we show that most of these results cannot be extended to pairs of convex sets or functions, even in Hilbert space. For instance, two proper lower semicontinuous convex functions need not have a common point of subdifferentiability nor need they have a subdifferential in common. Negative answers are also obtained to certain questions concerning density of support points for the closed sum of two convex subsets of Hilbert space.


1980 ◽  
Vol 32 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Teck-Cheong Lim

Let X be a Banach space and B a bounded subset of X. For each x ∈ X, define R(x) = sup{‖x – y‖ : y ∈ B}. If C is a nonempty subset of X, we call the number R = inƒ{R(x) : x ∈ C} the Chebyshev radius of B in C and the set the Chebyshev center of B in C. It is well known that if C is weakly compact and convex, then and if, in addition, X is uniformly convex, then the Chebyshev center is unique; see e.g., [9].Let {Bα : α ∈ ∧} be a decreasing net of bounded subsets of X. For each x ∈ X and each α ∈ ∧, define


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


Sign in / Sign up

Export Citation Format

Share Document