scholarly journals A note on the edge reconstruction conjecture

1975 ◽  
Vol 12 (1) ◽  
pp. 27-30 ◽  
Author(s):  
E.F. Schmeichel

Let G be a graph with vertex degree sequence d1 ≤ d2 ≤ … ≤ dp It is shown that if di + dp–i+1 ≥ p for some i, then G is uniquely reconstructable from its collection of maximal (edge deleted) subgraphs. This generalizes considerably a result of Lovász. As a corollary, it is shown that Chvátal's existence condition for hamiltonian cycles implies edge reconstructability as well.

Filomat ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 1025-1033
Author(s):  
Predrag Milosevic ◽  
Emina Milovanovic ◽  
Marjan Matejic ◽  
Igor Milovanovic

Let G be a simple connected graph of order n and size m, vertex degree sequence d1 ? d2 ?...? dn > 0, and let ?1 ? ? 2 ? ... ? ?n-1 > ?n = 0 be the eigenvalues of its Laplacian matrix. Laplacian energy LE, Laplacian-energy-like invariant LEL and Kirchhoff index Kf, are graph invariants defined in terms of Laplacian eigenvalues. These are, respectively, defined as LE(G) = ?n,i=1 |?i-2m/n|, LEL(G) = ?n-1 i=1 ??i and Kf (G) = n ?n-1,i=1 1/?i. A vertex-degree-based topological index referred to as degree deviation is defined as S(G) = ?n,i=1 |di- 2m/n|. Relations between Kf and LE, Kf and LEL, as well as Kf and S are obtained.


2011 ◽  
Vol 50-51 ◽  
pp. 166-170 ◽  
Author(s):  
Wen Jun Xiao ◽  
Shi Zhong Jiang ◽  
Guan Rong Chen

It is now well known that many large-sized complex networks obey a scale-free power-law vertex-degree distribution. Here, we show that when the vertex degrees of a large-sized network follow a scale-free power-law distribution with exponent  2, the number of degree-1 vertices, if nonzero, is of order N and the average degree is of order lower than log N, where N is the size of the network. Furthermore, we show that the number of degree-1 vertices is divisible by the least common multiple of , , . . ., , and l is less than log N, where l = < is the vertex-degree sequence of the network. The method we developed here relies only on a static condition, which can be easily verified, and we have verified it by a large number of real complex networks.


2020 ◽  
Vol 5 (2) ◽  
pp. 99-108
Author(s):  
◽  
P. S Ranjini ◽  
V. Lokesha ◽  
Sandeep Kumar

AbstractTopological indices play a very important role in the mathematical chemistry. The topological indices are numerical parameters of a graph. The degree sequence is obtained by considering the set of vertex degree of a graph. Graph operators are the ones which are used to obtain another broader graphs. This paper attempts to find degree sequence of vertex–F join operation of graphs for some standard graphs.


Author(s):  
I. Milovanović ◽  
M. Matejić ◽  
E. Milovanović ◽  
A. Ali

Let G = (V,E), V = {v1, v2,..., vn}, be a simple connected graph of order n, size m with vertex degree sequence ∆ = d1 ≥ d2 ≥ ··· ≥ dn = d > 0, di = d(vi). Denote by G a complement of G. If vertices vi and v j are adjacent in G, we write i ~ j, otherwise we write i j. The general zeroth-order Randic coindex of ' G is defined as 0Ra(G) = ∑i j (d a-1 i + d a-1 j ) = ∑ n i=1 (n-1-di)d a-1 i , where a is an arbitrary real number. Similarly, general zerothorder Randic coindex of ' G is defined as 0Ra(G) = ∑ n i=1 di(n-1-di) a-1 . New lower bounds for 0Ra(G) and 0Ra(G) are obtained. A case when G has a tree structure is also covered.


2019 ◽  
Vol 119 (2) ◽  
pp. 409-439 ◽  
Author(s):  
Christian Reiher ◽  
Vojtěch Rödl ◽  
Andrzej Ruciński ◽  
Mathias Schacht ◽  
Endre Szemerédi

2004 ◽  
Vol 88 (512) ◽  
pp. 215-218 ◽  
Author(s):  
Mark A. M. Lynch

In this paper graphs that contain unique Hamiltonian cycles are introduced. The graphs are of arbitrary size and dense in the sense that their average vertex degree is greater than half the number of vertices that make up the graph. The graphs can be used to generate challenging puzzles. The problem is particularly challenging when the graph is large and the ‘method’ of solution is unknown to the solver.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Ismael G. Yero ◽  
Juan A. Rodríguez-Velázquez

Let G be a graph with vertex set V=(v1,v2,…,vn). Let δ(vi) be the degree of the vertex vi∈V. If the vertices vi1,vi2,…,vih+1 form a path of length h≥1 in the graph G, then the hth order Randić index Rh of G is defined as the sum of the terms 1/δ(vi1)δ(vi2)⋯δ(vih+1) over all paths of length h contained (as subgraphs) in G. Lower and upper bounds for Rh, in terms of the vertex degree sequence of its factors, are obtained for corona product graphs. Moreover, closed formulas are obtained when the factors are regular graphs.


10.37236/8279 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Padraig Condon ◽  
Alberto Espuny Díaz ◽  
Daniela Kühn ◽  
Deryk Osthus ◽  
Jaehoon Kim

Pósa's theorem states that any graph $G$ whose degree sequence $d_1 \le \cdots \le d_n$ satisfies $d_i \ge i+1$ for all $i < n/2$ has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs $G$ of random graphs, i.e.~we prove a `resilience version' of Pósa's theorem: if $pn \ge C \log n$ and the $i$-th vertex degree (ordered increasingly) of $G \subseteq G_{n,p}$ is at least $(i+o(n))p$ for all $i<n/2$, then $G$ has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chvátal's theorem generalises Pósa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chvátal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of $G_{n,p}$ which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.


Sign in / Sign up

Export Citation Format

Share Document