A Small-World Model of Scale-Free Networks: Features and Verifications

2011 ◽  
Vol 50-51 ◽  
pp. 166-170 ◽  
Author(s):  
Wen Jun Xiao ◽  
Shi Zhong Jiang ◽  
Guan Rong Chen

It is now well known that many large-sized complex networks obey a scale-free power-law vertex-degree distribution. Here, we show that when the vertex degrees of a large-sized network follow a scale-free power-law distribution with exponent  2, the number of degree-1 vertices, if nonzero, is of order N and the average degree is of order lower than log N, where N is the size of the network. Furthermore, we show that the number of degree-1 vertices is divisible by the least common multiple of , , . . ., , and l is less than log N, where l = < is the vertex-degree sequence of the network. The method we developed here relies only on a static condition, which can be easily verified, and we have verified it by a large number of real complex networks.

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 998-1014
Author(s):  
Mikhail Tamm ◽  
Dmitry Koval ◽  
Vladimir Stadnichuk

Experimentally observed complex networks are often scale-free, small-world and have an unexpectedly large number of small cycles. An Apollonian network is one notable example of a model network simultaneously having all three of these properties. This network is constructed by a deterministic procedure of consequentially splitting a triangle into smaller and smaller triangles. In this paper, a similar construction based on the consequential splitting of tetragons and other polygons with an even number of edges is presented. The suggested procedure is stochastic and results in the ensemble of planar scale-free graphs. In the limit of a large number of splittings, the degree distribution of the graph converges to a true power law with an exponent, which is smaller than three in the case of tetragons and larger than three for polygons with a larger number of edges. It is shown that it is possible to stochastically mix tetragon-based and hexagon-based constructions to obtain an ensemble of graphs with a tunable exponent of degree distribution. Other possible planar generalizations of the Apollonian procedure are also briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Faxu Li ◽  
Liang Wei ◽  
Haixing Zhao ◽  
Feng Hu

Subgraph centrality measure characterizes the participation of each node in all subgraphs in a network. Smaller subgraphs are given more weight than large ones, which makes this measure appropriate for characterizing network motifs. This measure is better in being able to discriminate the nodes of a network than alternate measures. In this paper, the important issue of subgraph centrality distributions is investigated through theory-guided extensive numerical simulations, for three typical complex network models, namely, the ER random-graph networks, WS small-world networks, and BA scale-free networks. It is found that these three very different types of complex networks share some common features, particularly that the subgraph centrality distributions in increasing order are all insensitive to the network connectivity characteristics, and also found that the probability distributions of subgraph centrality of the ER and of the WS models both follow the gamma distribution, and the BA scale-free networks exhibit a power-law distribution with an exponential cutoff.


2016 ◽  
Vol 8 (2) ◽  
pp. 179
Author(s):  
Zhen Du ◽  
Pujiang Chen ◽  
Na Luo ◽  
Yingjie Tang

<p>In this paper, directed complex network is applied to the study of A shares in SSE (Shanghai Stock Exchange). In order to discuss the intrinsic attributes and regularities in stock market, we set up a directed complex network, selecting 450 stocks as nodes between 2012 and 2014 and stock yield correlation connected as edges. By discussing out-degree and in-degree distribution, we find essential nodes in stock network, which represent the leading stock,. Moreover, we analyze directed average path length and clustering coefficient in the condition of different threshold, which shows that the network doesn’t have a small- world effect. Furthermore, we see that when threshold is between 0.08 and 0.15, the network follows the power-law distribution and behaves scale-free.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Shudong Li ◽  
Lixiang Li ◽  
Yan Jia ◽  
Xinran Liu ◽  
Yixian Yang

In the research on network security, distinguishing the vulnerable components of networks is very important for protecting infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which was ignored before. Concerned with random attack (RA) and highest load attack (HL) on nodes, we model cascading dynamics of complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-Albert scale-free networks (SF), Watts-Strogatz small-world networks (WS), Erdos-Renyi random networks (ER), and two real-world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of weight are the most vulnerable and the ones with small value of the third weight are also vulnerable. Also, the real-world autonomous system with power-law distribution verifies these findings. Moreover, for WS and ER networks under both RA and HL attack, when the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole and making protection strategy.


2017 ◽  
Vol 46 (3-4) ◽  
pp. 89-98
Author(s):  
Marina Leri ◽  
Yury Pavlov

We consider configuration graphs the vertex degrees of which are independent and  follow the power-law distribution. Random graphs dynamics takes place in a random  environment with the parameter of vertex degree distribution following  uniform distributions on finite fixed intervals. As the number of vertices tends  to infinity the limit distributions of the maximum vertex degree and the number  of vertices with a given degree were obtained. By computer simulations we study  the robustness of those graphs from the viewpoints of link saving and node survival  in the two cases of the destruction process: the ``targeted attack'' and the  ``random breakdown''. We obtained and compared the results under the conditions that  the vertex degree distribution was averaged with respect to the distribution of the  power-law parameter or that the values of the parameter were drawn from the uniform  distribution separately for each vertex.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2020 ◽  
Vol 117 (26) ◽  
pp. 14812-14818 ◽  
Author(s):  
Bin Zhou ◽  
Xiangyi Meng ◽  
H. Eugene Stanley

Whether real-world complex networks are scale free or not has long been controversial. Recently, in Broido and Clauset [A. D. Broido, A. Clauset,Nat. Commun.10, 1017 (2019)], it was claimed that the degree distributions of real-world networks are rarely power law under statistical tests. Here, we attempt to address this issue by defining a fundamental property possessed by each link, the degree–degree distance, the distribution of which also shows signs of being power law by our empirical study. Surprisingly, although full-range statistical tests show that degree distributions are not often power law in real-world networks, we find that in more than half of the cases the degree–degree distance distributions can still be described by power laws. To explain these findings, we introduce a bidirectional preferential selection model where the link configuration is a randomly weighted, two-way selection process. The model does not always produce solid power-law distributions but predicts that the degree–degree distance distribution exhibits stronger power-law behavior than the degree distribution of a finite-size network, especially when the network is dense. We test the strength of our model and its predictive power by examining how real-world networks evolve into an overly dense stage and how the corresponding distributions change. We propose that being scale free is a property of a complex network that should be determined by its underlying mechanism (e.g., preferential attachment) rather than by apparent distribution statistics of finite size. We thus conclude that the degree–degree distance distribution better represents the scale-free property of a complex network.


2013 ◽  
Vol 753-755 ◽  
pp. 2959-2962
Author(s):  
Jun Tao Yang ◽  
Hui Wen Deng

Assigning the value of interest to each node in the network, we give a scale-free network model. The value of interest is related to the fitness and the degree of the node. Experimental results show that the interest model not only has the characteristics of the BA scale-free model but also has the characteristics of fitness model, and the network has a power-law distribution property.


Sign in / Sign up

Export Citation Format

Share Document