scholarly journals Inradius and circumradius for planar convex bodies containing no lattice points

1999 ◽  
Vol 59 (1) ◽  
pp. 163-168
Author(s):  
P.R. Scott ◽  
P.W. Awyong

Let K be a planar convex body containing no points of the integer lattice. We give a new inequality relating the inradius and circumradius of K.

1999 ◽  
Vol 51 (2) ◽  
pp. 225-249 ◽  
Author(s):  
U. Betke ◽  
K. Böröczky

AbstractLet M be a convex body such that the boundary has positive curvature. Then by a well developed theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) = V(λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimatewhere SZd (M) denotes the lattice surface area of M. The term SZd is optimal for all convex bodies and o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small deformations of M.Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to infinity. Here we havewhere the convex body K satisfies some simple condition, V(Pλ; K; 1) is some mixed volume and S(Pλ) is the surface area of Pλ.


1953 ◽  
Vol 5 ◽  
pp. 261-270 ◽  
Author(s):  
Harvey Cohn

The consideration of relative extrema to correspond to the absolute extremum which is the critical lattice has been going on for some time. As far back as 1873, Korkine and Zolotareff [6] worked with the ellipsoid in hyperspace (i.e., with quadratic forms), and later Minkowski [8] worked with a general convex body in two or three dimensions. They showed how to find critical lattices by selection from among a finite number of relative extrema. They were aided by the long-recognized premise that only a finite number of lattice points can enter into consideration [1] when one deals with lattices “admissible to convex bodies.”


2007 ◽  
Vol 39 (3) ◽  
pp. 613-629 ◽  
Author(s):  
Gennadiy Averkov ◽  
Gabriele Bianchi

The covariogram gK(x) of a convex body K ⊆ Ed is the function which associates to each x ∈ Ed the volume of the intersection of K with K + x, where Ed denotes the Euclidean d-dimensional space. Matheron (1986) asked whether gK determines K, up to translations and reflections in a point. Positive answers to Matheron's question have been obtained for large classes of planar convex bodies, while for d ≥ 3 there are both positive and negative results. One of the purposes of this paper is to sharpen some of the known results on Matheron's conjecture indicating how much of the covariogram information is needed to get the uniqueness of determination. We indicate some subsets of the support of the covariogram, with arbitrarily small Lebesgue measure, such that the covariogram, restricted to those subsets, identifies certain geometric properties of the body. These results are more precise in the planar case, but some of them, both positive and negative ones, are proved for bodies of any dimension. Moreover some results regard most convex bodies, in the Baire category sense. Another purpose is to extend the class of convex bodies for which Matheron's conjecture is confirmed by including all planar convex bodies possessing two nondegenerate boundary arcs being reflections of each other.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Antonio Cañete

AbstractIn this note we obtain some properties of the Cheeger set $$C_\varOmega $$ C Ω associated to a k-rotationally symmetric planar convex body $$\varOmega $$ Ω . More precisely, we prove that $$C_\varOmega $$ C Ω is also k-rotationally symmetric and that the boundary of $$C_\varOmega $$ C Ω touches all the edges of $$\varOmega $$ Ω .


1999 ◽  
Vol 59 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Poh Wah Awyong ◽  
Paul R. Scott

Let K be a planar, compact, convex set with circumradius R, diameter d, width w and inradius r, and containing no points of the integer lattice. We generalise inequalities concerning the ‘dual’ quantities (2R − d) and (w − 2r) to rectangular lattices. We then use these results to obtain corresponding inequalities for a planar convex set with two interior lattice points. Finally, we conjecture corresponding results for sets containing one interior lattice point.


2021 ◽  
Vol 31 (5) ◽  
Author(s):  
Jonas Allemann ◽  
Norbert Hungerbühler ◽  
Micha Wasem

AbstractWe obtain a formula for the number of horizontal equilibria of a planar convex body K with respect to a center of mass O in terms of the winding number of the evolute of $$\partial K$$ ∂ K with respect to O. The formula extends to the case where O lies on the evolute of $$\partial K$$ ∂ K and a suitably modified version holds true for non-horizontal equilibria.


2007 ◽  
Vol 39 (03) ◽  
pp. 613-629 ◽  
Author(s):  
Gennadiy Averkov ◽  
Gabriele Bianchi

The covariogramgK(x) of a convex bodyK⊆Edis the function which associates to eachx∈Edthe volume of the intersection ofKwithK+x, whereEddenotes the Euclideand-dimensional space. Matheron (1986) asked whethergKdeterminesK, up to translations and reflections in a point. Positive answers to Matheron's question have been obtained for large classes of planar convex bodies, while ford≥ 3 there are both positive and negative results. One of the purposes of this paper is to sharpen some of the known results on Matheron's conjecture indicating how much of the covariogram information is needed to get the uniqueness of determination. We indicate some subsets of the support of the covariogram, with arbitrarily small Lebesgue measure, such that the covariogram, restricted to those subsets, identifies certain geometric properties of the body. These results are more precise in the planar case, but some of them, both positive and negative ones, are proved for bodies of any dimension. Moreover some results regard most convex bodies, in the Baire category sense. Another purpose is to extend the class of convex bodies for which Matheron's conjecture is confirmed by including all planar convex bodies possessing two nondegenerate boundary arcs being reflections of each other.


Author(s):  
Ansgar Freyer ◽  
Martin Henk

AbstractGardner et al. posed the problem to find a discrete analogue of Meyer’s inequality bounding from below the volume of a convex body by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question of bounding the number of lattice points of a convex body in terms of slices, as well as projections.


2018 ◽  
Vol 70 (4) ◽  
pp. 804-823 ◽  
Author(s):  
Apostolos Giannopoulos ◽  
Alexander Koldobsky ◽  
Petros Valettas

AbstractWe provide general inequalities that compare the surface area S(K) of a convex body K in ℝn to the minimal, average, or maximal surface area of its hyperplane or lower dimensional projections. We discuss the same questions for all the quermassintegrals of K. We examine separately the dependence of the constants on the dimension in the case where K is in some of the classical positions or K is a projection body. Our results are in the spirit of the hyperplane problem, with sections replaced by projections and volume by surface area.


Sign in / Sign up

Export Citation Format

Share Document