scholarly journals Bounds on the Lattice Point Enumerator via Slices and Projections

Author(s):  
Ansgar Freyer ◽  
Martin Henk

AbstractGardner et al. posed the problem to find a discrete analogue of Meyer’s inequality bounding from below the volume of a convex body by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question of bounding the number of lattice points of a convex body in terms of slices, as well as projections.

1999 ◽  
Vol 51 (2) ◽  
pp. 225-249 ◽  
Author(s):  
U. Betke ◽  
K. Böröczky

AbstractLet M be a convex body such that the boundary has positive curvature. Then by a well developed theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) = V(λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimatewhere SZd (M) denotes the lattice surface area of M. The term SZd is optimal for all convex bodies and o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small deformations of M.Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to infinity. Here we havewhere the convex body K satisfies some simple condition, V(Pλ; K; 1) is some mixed volume and S(Pλ) is the surface area of Pλ.


1953 ◽  
Vol 5 ◽  
pp. 261-270 ◽  
Author(s):  
Harvey Cohn

The consideration of relative extrema to correspond to the absolute extremum which is the critical lattice has been going on for some time. As far back as 1873, Korkine and Zolotareff [6] worked with the ellipsoid in hyperspace (i.e., with quadratic forms), and later Minkowski [8] worked with a general convex body in two or three dimensions. They showed how to find critical lattices by selection from among a finite number of relative extrema. They were aided by the long-recognized premise that only a finite number of lattice points can enter into consideration [1] when one deals with lattices “admissible to convex bodies.”


Author(s):  
K. S. Gangadharan ◽  
A. E. Ingham

Let r(n) be the number of representations of n as a sum of two squares, d(n) the number of divisors of n, andwhere γ is Euler's constant. Then P(x) is the error term in the problem of the lattice points of the circle, and Δ(x) the error term in Dirichlet's divisor problem, or the problem of the lattice points of the rectangular hyperbola.


2011 ◽  
Vol 172-174 ◽  
pp. 1119-1127
Author(s):  
Tetsuo Mohri

Continuous Displacement Cluster Variation Method is employed to study binary phase equilibria on the two dimensional square lattice with Lennard-Jones type pair potentials. It is confirmed that the transition temperature decreases significantly as compared with the one obtained by conventional Cluster Variation Method. This is ascribed to the distribution of atomic pairs in a wide range of atomic distance, which enables the system to attain the lower free energy. The spatial distribution of atomic species around a Bravais lattice point is visualized. Although the average position of an atom is centred at the Bravais lattice point, the maximum pair probability is not necessarily attained for the pairs located at the neighboring Bravais lattice points. In addition to the real space information, k-space information are calculated in the present study. Among them, the diffuse intensity spectra due to short range ordering and atomic displacement are discussed.


1995 ◽  
Vol 52 (1) ◽  
pp. 137-151 ◽  
Author(s):  
Poh W. Awyong ◽  
Paul R. Scott

We obtain a result about the maximal circumradius of a planar compact convex set having circumcentre O and containing no non-zero lattice points in its interior. In addition, we show that under certain conditions, the set with maximal circumradius is a triangle with an edge containing two lattice points.


1959 ◽  
Vol 4 (2) ◽  
pp. 92-95 ◽  
Author(s):  
A. M. Macbeath

The aim of this note is to examine the basic ideas underlying Minkowski's theorem on lattice points in a symmetrical convex body and related results of Blichfeldt, and to indicate how these can be generalized. Theorems analogous to Minkowski's, on the automorphisms of quadratic forms and other linear groups and on Fuchsian groups of transformations in the complex plane, have been obtained by Siegel [6] and Tsuji [7], Generalizations which include these are due to Chabauty [2] and Santalo [5].


Author(s):  
Puwadet Sutipanya ◽  
Takashi Arai

Abstract The simplest and most time-efficient phase-separation dynamics simulations are carried out on a disordered lattice to calculate the partial structure factors of coarse-grained A-B binary mixtures. The typical coarse-grained phase-separation models use regular lattices and can describe the local concentrations but cannot describe both local density and concentration fluctuations. To introduce fluctuation for local density in the model, the particle positions from a hard sphere fluid model are determined as disordered lattice points for the model. Then we place the local order parameter as the difference of the concentrations of A and B components on each lattice point. The concentration at each lattice point is time-evolved by discrete equations derived from the Cahn-Hilliard equation. From both fluctuations, Bhatia and Thornton’s structure factor can be accurately calculated. The structure factor for concentration fluctuations at the large wavenumber region gives us the correct mean concentrations of the components. Using the mean concentrations, partial structure factors can be converted from three of Bhatia and Thornton’s structure factors. The present model and procedures can provide a means of analysing the structural properties of many materials that exhibit complex morphological changes.


10.37236/5734 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Paul Johnson

We apply lattice point techniques to the study of simultaneous core partitions. Our central observation is that for $a$ and $b$ relatively prime, the abacus construction identifies the set of simultaneous $(a,b)$-core partitions with lattice points in a rational simplex. We apply this result in two main ways: using Ehrhart theory, we reprove Anderson's theorem that there are $(a+b-1)!/a!b!$ simultaneous $(a,b)$-cores; and using Euler-Maclaurin theory we prove Armstrong's conjecture that the average size of an $(a,b)$-core is $(a+b+1)(a-1)(b-1)/24$. Our methods also give new derivations of analogous formulas for the number and average size of self-conjugate $(a,b)$-cores.


Author(s):  
G. R. Everest

AbstractA well-known theorem of Hardy and Littlewood gives a three-term asymptotic formula, counting the lattice points inside an expanding, right triangle. In this paper a generalisation of their theorem is presented. Also an analytic method is developed which enables one to interpret the coefficients in the formula. These methods are combined to give a generalisation of a “heightcounting” formula of Györy and Pethö which itself was a generalisation of a theorem of Lang.


Sign in / Sign up

Export Citation Format

Share Document