scholarly journals A subdifferential characterisation of Banach spaces with the Radon–Nikodym property

2002 ◽  
Vol 66 (2) ◽  
pp. 313-316 ◽  
Author(s):  
J. R. Giles

A Banach space has the Radon–Nikodym Property if and only if every continuous weak* lower semi–continuous gauge on the dual space has a point of its domain where its subdifferential is contained in the natural embedding.

2019 ◽  
Vol 125 (1) ◽  
pp. 67-83
Author(s):  
Julia Martsinkevitš ◽  
Märt Põldvere

Godefroy, Kalton, and Saphar called a closed subspace $Y$ of a Banach space $Z$ an ideal if its annihilator $Y^\bot $ is the kernel of a norm-one projection $P$ on the dual space $Z^\ast $. If $Y$ is an ideal in $Z$ with respect to a projection on $Z^\ast $ whose range is norming for $Z$, then $Y$ is said to be a strict ideal. We study uniqueness of norm-preserving extensions of functionals on the space $\mathcal{K}(X,Y) $ of compact operators between Banach spaces $X$ and $Y$ to the larger space $\mathcal{K}(X,Z) $ under the assumption that $Y$ is a strict ideal in $Z$. Our main results are: (1) if $y^\ast $ is an extreme point of $B_{Y^{\ast} }$ having a unique norm-preserving extension to $Z$, and $x^{\ast\ast} \in B_{X^{\ast\ast} }$, then the only norm-preserving extension of the functional $x^{\ast\ast} \otimes y^\ast \in \mathcal {K}(X,Y)^\ast $ to $\mathcal {K}(X,Z)$ is $x^{\ast\ast} \otimes z^\ast $ where $z^\ast \in Z^\ast $ is the only norm-preserving extension of $y^\ast $ to $Z$; (2) if $\mathcal{K}(X,Y) $ is an ideal in $\mathcal{K}(X,Z) $ and $Y$ has Phelps' property $U$ in its bidual $Y^{\ast\ast} $ (i.e., every bounded linear functional on $Y$ admits a unique norm-preserving extension to $Y^{\ast\ast} $), then $\mathcal{K}(X,Y) $ has property $U$ in $\mathcal{K}(X,Z) $ whenever $X^{\ast\ast} $ has the Radon-Nikodým property.


2021 ◽  
Vol 8 (1) ◽  
pp. 48-59
Author(s):  
Fernanda Botelho ◽  
Richard J. Fleming

Abstract Given Banach spaces X and Y, we ask about the dual space of the 𝒧(X, Y). This paper surveys results on tensor products of Banach spaces with the main objective of describing the dual of spaces of bounded operators. In several cases and under a variety of assumptions on X and Y, the answer can best be given as the projective tensor product of X ** and Y *.


Author(s):  
K. F. Ng ◽  
C. K. Law

AbstractLet B be an ordered Banach space with ordered Banach dual space. Let N denote the canonical half-norm. We give an alternative proof of the following theorem of Robinson and Yamamuro: the norm on B is α-monotone (α ≥ 1) if and only if for each f in B* there exists g ∈ B* with g ≥ 0, f and ∥g∥ ≤ α N(f). We also establish a dual result characterizing α-monotonicity of B*.


1976 ◽  
Vol 15 (3) ◽  
pp. 351-354 ◽  
Author(s):  
A.L. Brown

For a Banach space B let P denote the canonical projection of the third dual space of B onto the embedding of the first dual into the third. It is shown that if B = l1 then ‖I-P‖ = 2.This fact shows to be mistaken a current belief in a statement which is equivalent to the statement that for all Banach spaces B the operator I – P is of norm one.


1992 ◽  
Vol 45 (2) ◽  
pp. 285-296 ◽  
Author(s):  
Zhibao Hu ◽  
Bor-Luh Lin

We study some smoothness properties of a Banach space X that are related to the weak* asymptotic-norming properties of the dual space X*. These properties imply that X is an Asplund space and are related to the duality mapping of X.


1986 ◽  
Vol 29 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Ioannis A. Polyrakis

The study of extreme, strongly exposed points of closed, convex and bounded sets in Banach spaces has been developed especially by the interconnection of the Radon–Nikodým property with the geometry of closed, convex and bounded subsets of Banach spaces [5],[2] . In the theory of ordered Banach spaces as well as in the Choquet theory, [4], we are interested in the study of a special type of convex sets, not necessarily bounded, namely the bases for the positive cone. In [7] the geometry (extreme points, dentability) of closed and convex subsets K of a Banach space X with the Radon-Nikodým property is studied and special emphasis has been given to the case where K is a base for acone P of X. In [6, Theorem 1], it is proved that an infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to l1 if, and only if, X has the Krein–Milman property and its positive cone has a bounded base.


1977 ◽  
Vol 20 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Abraham Bick

AbstractWe give a simpler proof to a theorem of L. A. Karlovitz that the dual of a flat Banach space is flat, and also study some geometric properties of the dual space.


Author(s):  
Paulette Saab

Given a compact Hausdorff space X, E and F two Banach spaces, let T: C(X, E) → F denote a bounded linear operator (here C(X, E) stands for the Banach space of all continuous E-valued functions defined on X under supremum norm). It is well known [4] that any such operator T has a finitely additive representing measure G that is defined on the σ–field of Borel subsets of X and that G takes its values in the space of all bounded linear operators from E into the second dual of F. The representing measure G enjoys a host of many important properties; we refer the reader to [4] and [5] for more on these properties. The question of whether properties of the operator T can be characterized in terms of properties of the representing measure has been considered by many authors, see for instance [1], [2], [3] and [6]. Most characterizations presented (see [3] concerning weakly compact operators or [3] and [6] concerning unconditionally converging operators) were given under additional assumptions on the Banach space E. The aim of this paper is to show that one cannot drop the assumptions on E, indeed as we shall soon show many of the operator characterizations characterize the Banach space E itself. More specifically, it is known [3] that if E* and E** have the Radon-Nikodym property then a bounded linear operator T: C(X, E) → F is weakly compact if and only if the measure G is continuous at Ø (also called strongly bounded), i.e. limn ||G|| (Bn) = 0 for every decreasing sequence Bn ↘ Ø of Borel subsets of X (here ||G|| (B) denotes the semivariation of G at B), and if for every Borel set B the operator G(B) is a weakly compact operator from E to F. In this paper we shall show that if one wants to characterize weakly compact operators as those operators with the above mentioned properties then E* and E** must both have the Radon-Nikodym property. This will constitute the first part of this paper and answers in the negative a question of [2]. In the second part we consider unconditionally converging operators on C(X, E). It is known [6] that if T: C(X, E) → F is an unconditionally converging operator, then its representing measure G is continuous at 0 and, for every Borel set B, G(B) is an unconditionally converging operator from E to F. The converse of the above result was shown to be untrue by a nice example (see [2]). Here again we show that if one wants to characterize unconditionally converging operators as above, then the Banach space E cannot contain a copy of c0. Finally, in the last section we characterize Banach spaces E with the Schur property in terms of properties of Dunford-Pettis operators on C(X, E) spaces.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Chin-Tzong Pang ◽  
Eskandar Naraghirad ◽  
Ching-Feng Wen

Using Bregman functions, we introduce the new concept of Bregman generalizedf-projection operatorProjCf, g:E*→C, whereEis a reflexive Banach space with dual spaceE*; f: E→ℝ∪+∞is a proper, convex, lower semicontinuous and bounded from below function;g: E→ℝis a strictly convex and Gâteaux differentiable function; andCis a nonempty, closed, and convex subset ofE. The existence of a solution for a class of variational inequalities in Banach spaces is presented.


Sign in / Sign up

Export Citation Format

Share Document