scholarly journals Cotorsion radicals and projective modules

1971 ◽  
Vol 5 (2) ◽  
pp. 241-253 ◽  
Author(s):  
John A. Beachy

We study the notion (for categories of modules) dual to that of torsion radical and its connections with projective modules.Torsion radicals in categories of modules have been studied extensively in connection with quotient categories and rings of quotients. (See [8], [12] and [13].) In this paper we consider the dual notion, which we have called a cotorsion radical. We show that the cotorsion radicals of the category RM correspond to the idempotent ideals of R. Thus they also correspond to TTF classes in the sense of Jans [9].It is well-known that the trace ideal of a projective module is idempotent. We show that this is in fact a consequence of the natural way in which every projective module determines a cotorsion radical. As an application of these techniques we study a question raised by Endo [7], to characterize rings with the property that every finitely generated, projective and faithful left module is completely faithful. We prove that for a left perfect ring this is equivalent to being an S-ring in the sense of Kasch. This extends the similar result of Morita [15] for artinian rings.

2008 ◽  
Vol 50 (1) ◽  
pp. 71-74
Author(s):  
NAHID ASHRAFI

AbstractThe unit sum number u(R) of a ring R is the least k such that every element is the sum of k units; if there is no such k then u(R) is ω or ∞ depending whether the units generate R additively or not. If RM is a left R-module, then the unit sum number of M is defined to be the unit sum number of the endomorphism ring of M. Here we show that if R is a ring such that R/J(R) is semisimple and $\Z_{2}$ is not a factor of R/J(R) and if P is a projective R-module such that JP ≪ P, (JP small in P), then u(P)= 2. As a result we can see that if P is a projective module over a perfect ring then u(P)=2.


1975 ◽  
Vol 19 (4) ◽  
pp. 345-352 ◽  
Author(s):  
Michael Holcombe

Let be a category with finite products and a final object and let X be any group object in . The set of -morphisms, (X, X) is, in a natural way, a near-ring which we call the endomorphism near-ring of X in Such nearrings have previously been studied in the case where is the category of pointed sets and mappings, (6). Generally speaking, if Γ is an additive group and S is a semigroup of endomorphisms of Γ then a near-ring can be generated naturally by taking all zero preserving mappings of Γ into itself which commute with S (see 1). This type of near-ring is again an endomorphism near-ring, only the category is the category of S-acts and S-morphisms (see (4) for definition of S-act, etc.).


1965 ◽  
Vol 25 ◽  
pp. 113-120 ◽  
Author(s):  
Akira Hattori

In § 1 of this note we first define the trace of an endomorphism of a projective module P over a non-commutative ring A. Then we call the trace of the identity the rank element r(P) of P, which we shall illustrate by several examples. For a projective module P over the groupalgebra of a finite group G, the rank element of P is essentially the character of G in P. In § 2 we prove that under certain assumption two projective modules Pi and P2 over an algebra over a complete local ring o are isomorphic if and only if their rank elements are identical. This is a type of proposition asserting that two representations are equivalent if and only if their characters are identical, and in fact, when A is the groupalgebra, the above theorem may be considered as another formulation of Swan’s local theorem [9]).


1989 ◽  
Vol 12 (4) ◽  
pp. 821-822 ◽  
Author(s):  
Gary F. Birkenmeier

We define a module M to be directly refinable if whenever M=A+B, there existsA¯⊆AandB¯⊆Bsuch thatM=A¯⊕B¯. Theorem. Let M be a quasi-projective module. Then M is directly refinable if and only if M has the finite exchange property.


1987 ◽  
Vol 102 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Aidan Schofield

In [1], Dowbor, Ringel and Simson consider hereditary artinian rings of finite representation type; it is known that if A is an hereditary artinian algebra of finite representation type, finite-dimensional over a field, then it corresponds to a Dynkin diagram in a natural way; they show that an hereditary artinian ring of finite representation type corresponds to a Coxeter diagram. However, in order to construct an hereditary artinian ring of finite representation type corresponding to a Coxeter diagram that is not Dynkin, they show that it is necessary though not sufficient to find an extension of skew fields such that the left and right dimensions are both finite but are different. No examples of such skew fields were known at the time. In [3], I constructed such extensions, and the main aim of this paper is to extend the methods of that paper to construct an extension of skew fields having all the properties needed to construct an hereditary artinian ring of finite representation type corresponding to the Coxeter diagram I2(5).


1979 ◽  
Vol 86 (6) ◽  
pp. 474 ◽  
Author(s):  
Jonathan S. Golan

Author(s):  
Samira Hashemi ◽  
Feysal Hassani ◽  
Rasul Rasuli

In this paper, we introduce and clarify a new presentation between the n-exact sequence and the n-injective module and n-projective module. Also, we obtain some new results about them.


2019 ◽  
Vol 5 (2) ◽  
pp. 76-82
Author(s):  
Iqbal Maulana

Modules are a generalization of the vector spaces of linear algebra in which the “scalars” are allowed to be from a ring with identity, rather than a field. In module theory there is a concept about projective module, i.e. a module over ring R in which it is projective module relative to all modules over ring R. Next, there is the fact that every module over ring R is projective module relative to all semisimple modules over ring R. If P is a module over ring R which it’s projective relative only to all semisimple modules over ring R, then P is called p-poor module. In the discussion of the projective module, there is a lemma associated with the equivalence of two modules K1 and K2 provided that there are two projective modules P1 and P2 such that is isomorphic to . That lemma is known as Schanuel’s lemma in projective modules. Because the p-poor module is a special case of the projective module, then in this paper will be discussed about Schanuel’s lemma in p-poor modules


1980 ◽  
Vol 32 (4) ◽  
pp. 937-944 ◽  
Author(s):  
W. K. Nicholson ◽  
J. F. Waiters ◽  
J. M. Zelmanowitz

If R is a ring an R-module M is called compressible when it can be embedded in each of its non-zero submodules; and M is called monoform if each partial endomorphism N → M, N ⊆ M, is either zero or monic. The ring R is called (left) weakly primitive if it has a faithful monoform compressible left module. It is known that a version of the Jacobson density theorem holds for weakly primitive rings [4], and that weak primitivity is a Mori ta invariant and is inherited by a variety of subrings and matrix rings. The purpose of this paper is to show that weak primitivity is preserved under formation of polynomials, rings of quotients, and group rings of torsion-free abelian groups. The key result is that R[x] is weakly primitive when R is (Theorem 1).


2017 ◽  
Vol 16 (02) ◽  
pp. 1750024
Author(s):  
C. Selvaraj ◽  
S. Santhakumar

In this paper, we investigate some properties of dual automorphism invariant modules over right perfect rings. Also, we introduce the notion of dual automorphism invariant cover and prove the existence of dual automorphism invariant cover. Moreover, we give the necessary and sufficient condition for every cyclic module to be a dual automorphism invariant module over a semi perfect ring and we prove that supplemented quasi projective module has finite exchange property. Also we give a characterization of a perfect ring using dual automorphism invariant module.


Sign in / Sign up

Export Citation Format

Share Document