scholarly journals Exact variational representations for the solution of the simple parabolic equation

1971 ◽  
Vol 5 (3) ◽  
pp. 305-314
Author(s):  
R.S. Anderssen

By constructing a special set of A-orthonormal functions, it is shown that, under certain smoothness assumptions, the variational and Fourier series representations for the solution of first initial boundary value problems for the simple parabolic differential equation coincide. This result is then extended in order to construct a variational representation for the solution of a very general first initial boundary value problem for this equation.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Yu Zhang

The initial-boundary value problems for the local fractional differential equation are investigated in this paper. The local fractional Fourier series solutions with the nondifferential terms are obtained. Two illustrative examples are given to show efficiency and accuracy of the presented method to process the local fractional differential equations.


1969 ◽  
Vol 1 (3) ◽  
pp. 363-374 ◽  
Author(s):  
R.S. Anderssen

Before variational methods can be applied to the solution of an initial boundary value problem for a parabolic differential equation, it is first necessary to derive an appropriate variational formulation for the problem. The required solution is then the function which minimises this variational formulation, and can be constructed using variational methods. Formulations for K-p.d. operators have been given by Petryshyn. Here, we show that a wide class of initial boundary value problems for parabolic differential equations can be related to operators which are densely invertible, and hence, K-p.d.; and develop a method which can be used to prove dense invertibility for an even wider class. In this way, the result of Adler on the non-existence of a functional for which the Euler-Lagrange equation is the simple parabolic is circumvented.


Author(s):  
Mariya A. Zarubinska ◽  
W. T. van Horssen

In this paper some initial boundary value problems for beam and plate equations will be studied. These initial boundary values problems can be regarded as simple models describing free oscillations of plates on elastic foundations or describing coupled torsional and vertical oscillations of a beam. An approximation for the solution of the initial-boundary value problem will be constructed by using a two-timescales perturbation method. For the plate on an elastic foundation it turns out that complicated internal resonances can occur for specific parameter values.


1991 ◽  
Vol 03 (02) ◽  
pp. 137-162 ◽  
Author(s):  
N. BELLOMO ◽  
T. GUSTAFSSON

This paper provides a review of the various results available in the mathematical literature on the solution to the initial and initial-boundary value problem for the discrete Boltzmann equation, a nonlinear mathematical model of the kinetic theory of gases. References include papers published until 1990. The aim of this survey paper is to provide a detailed picture of the state of the art in the field and some necessary information for future research in the field.


Author(s):  
Sharif E. Guseynov ◽  
Ruslans Aleksejevs ◽  
Jekaterina V. Aleksejeva

In the present paper, we propose an analytical approach for solving the 3D unsteady-state boundary-value problem for the second-order parabolic equation with the second and third types boundary conditions in two-layer rectangular parallelepipedic domain.


1972 ◽  
Vol 15 (2) ◽  
pp. 229-234
Author(s):  
Julius A. Krantzberg

We consider the initial-boundary value problem for the parabolic partial differential equation1.1in the bounded domain D, contained in the upper half of the xy-plane, where a part of the x-axis lies on the boundary B(see Fig.1).


Sign in / Sign up

Export Citation Format

Share Document