scholarly journals SOME REMARKS ON PRINCIPAL PRIME IDEALS

2010 ◽  
Vol 83 (1) ◽  
pp. 130-137 ◽  
Author(s):  
D. D. ANDERSON ◽  
SANGMIN CHUN

AbstractIn this paper we investigate principal prime ideals in commutative rings. Among other things we characterize the principal prime ideals that are both minimal and maximal and characterize the maximal ideals of a polynomial ring that are principal. Our main result is that if (p) is a principal prime ideal of an atomic ring R, then ht(p)≤1.

2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


2004 ◽  
Vol 03 (04) ◽  
pp. 437-443 ◽  
Author(s):  
ALGIRDAS KAUCIKAS ◽  
ROBERT WISBAUER

Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


2000 ◽  
Vol 43 (3) ◽  
pp. 312-319 ◽  
Author(s):  
David E. Dobbs

AbstractIf n and m are positive integers, necessary and sufficient conditions are given for the existence of a finite commutative ring R with exactly n elements and exactly m prime ideals. Next, assuming the Axiom of Choice, it is proved that if R is a commutative ring and T is a commutative R-algebra which is generated by a set I, then each chain of prime ideals of T lying over the same prime ideal of R has at most 2|I| elements. A polynomial ring example shows that the preceding result is best-possible.


1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


1978 ◽  
Vol 30 (01) ◽  
pp. 95-101 ◽  
Author(s):  
L. J. Ratliff

All rings in this paper are assumed to be commutative with identity, and the undefined terminology is the same as that in [3]. In 1956, in an important paper [2], M. Nagata constructed an example which showed (among other things): (i) a maximal chain of prime ideals in an integral extension domain R' of a local domain (R, M) need not contract in R to a maximal chain of prime ideals; and, (ii) a prime ideal P in R' may be such that height P < height P ∩ R. In his example, Rf was the integral closure of R and had two maximal ideals. In this paper, by using Nagata's example, we show that there exists a finite local integral extension domain of D = R[X](M,X) for which (i) and (ii) hold (see (2.8.1) and (2.10)).


Author(s):  
Mohammed Issoual

Let [Formula: see text] be a group with identity [Formula: see text] and [Formula: see text] be [Formula: see text]-graded commutative ring with [Formula: see text] In this paper, we introduce and study the graded versions of 1-absorbing prime ideal. We give some properties and characterizations of these ideals in graded ring, and we give a characterization of graded 1-absorbing ideal the idealization [Formula: see text]


2021 ◽  
Vol 29 (2) ◽  
pp. 173-186
Author(s):  
Fuad Ali Ahmed Almahdi ◽  
El Mehdi Bouba ◽  
Mohammed Tamekkante

Abstract Let R be a commutative ring with identity and S be a multiplicative subset of R. In this paper, we introduce the concept of weakly S-prime ideals which is a generalization of weakly prime ideals. Let P be an ideal of R disjoint with S. We say that P is a weakly S-prime ideal of R if there exists an s ∈ S such that, for all a, b ∈ R, if 0 ≠ ab ∈ P, then sa ∈ P or sb ∈ P. We show that weakly S-prime ideals have many analog properties to these of weakly prime ideals. We also use this new class of ideals to characterize S-Noetherian rings and S-principal ideal rings.


1991 ◽  
Vol 43 (2) ◽  
pp. 233-239 ◽  
Author(s):  
S. Visweswaran

In this note we consider commutative rings with identity over which every unitary module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD) rings. We show (1) a Noetherian ring R is a UZD if and only if R is semilocal and the Krull dimension of R is at most one, (2) a Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals, and (3) if a ring R has Noetherian spectrum and descending chain condition on prime ideals then R is a UZD if and only if Spec (R) is a finite set. The question of ascent and descent of the property of a ring being a UZD with respect to integral extension of rings has also been answered.


2019 ◽  
Vol 15 (01) ◽  
pp. 131-136 ◽  
Author(s):  
Haoli Wang ◽  
Jun Hao ◽  
Lizhen Zhang

Let [Formula: see text] be a commutative semigroup endowed with a binary associative operation [Formula: see text]. An element [Formula: see text] of [Formula: see text] is said to be idempotent if [Formula: see text]. The Erdős–Burgess constant of [Formula: see text] is defined as the smallest [Formula: see text] such that any sequence [Formula: see text] of terms from [Formula: see text] and of length [Formula: see text] contains a nonempty subsequence, the sum of whose terms is idempotent. Let [Formula: see text] be a prime power, and let [Formula: see text] be the polynomial ring over the finite field [Formula: see text]. Let [Formula: see text] be a quotient ring of [Formula: see text] modulo any ideal [Formula: see text]. We gave a sharp lower bound of the Erdős–Burgess constant of the multiplicative semigroup of the ring [Formula: see text], in particular, we determined the Erdős–Burgess constant in the case when [Formula: see text] is the power of a prime ideal or a product of pairwise distinct prime ideals in [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document