scholarly journals A note on universally zero-divisor rings

1991 ◽  
Vol 43 (2) ◽  
pp. 233-239 ◽  
Author(s):  
S. Visweswaran

In this note we consider commutative rings with identity over which every unitary module is a zero-divisor module. We call such rings Universally Zero-divisor (UZD) rings. We show (1) a Noetherian ring R is a UZD if and only if R is semilocal and the Krull dimension of R is at most one, (2) a Prüfer domain R is a UZD if and only if R has only a finite number of maximal ideals, and (3) if a ring R has Noetherian spectrum and descending chain condition on prime ideals then R is a UZD if and only if Spec (R) is a finite set. The question of ascent and descent of the property of a ring being a UZD with respect to integral extension of rings has also been answered.

2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


2005 ◽  
Vol 2005 (13) ◽  
pp. 2041-2051
Author(s):  
Niovi Kehayopulu ◽  
Michael Tsingelis

Chain conditions, finiteness conditions, growth conditions, and other forms of finiteness, Noetherian rings and Artinian rings have been systematically studied for commutative rings and algebras since 1959. In pursuit of the deeper results of ideal theory in ordered groupoids (semigroups), it is necessary to study special classes of ordered groupoids (semigroups). Noetherian ordered groupoids (semigroups) which are about to be introduced are particularly versatile. These satisfy a certain finiteness condition, namely, that every ideal of the ordered groupoid (semigroup) is finitely generated. Our purpose is to introduce the concepts of Noetherian and Artinian ordered groupoids. An ordered groupoid is said to be Noetherian if every ideal of it is finitely generated. In this paper, we prove that an equivalent formulation of the Noetherian requirement is that the ideals of the ordered groupoid satisfy the so-called ascending chain condition. From this idea, we are led in a natural way to consider a number of results relevant to ordered groupoids with descending chain condition for ideals. We moreover prove that an ordered groupoid is Noetherian if and only if it satisfies the maximum condition for ideals and it is Artinian if and only if it satisfies the minimum condition for ideals. In addition, we prove that there is a homomorphismπof an ordered groupoid (semigroup)Shaving an idealIonto the Rees quotient ordered groupoid (semigroup)S/I. As a consequence, ifSis an ordered groupoid andIan ideal ofSsuch that bothIand the quotient groupoidS/Iare Noetherian (Artinian), then so isS. Finally, we give conditions under which the proper prime ideals of commutative Artinian ordered semigroups are maximal ideals.


1961 ◽  
Vol 13 ◽  
pp. 569-586 ◽  
Author(s):  
Eben Matlis

Throughout this discussion R will be an integral domain with quotient field Q and K = Q/R ≠ 0. If A is an R-module, then A is said to be torsion-free (resp. divisible), if for every r ≠ 0 ∈ R the endomorphism of A defined by x → rx, x ∈ A, is a monomorphism (resp. epimorphism). If A is torsion-free, the rank of A is defined to be the dimension over Q of the vector space A ⊗R Q; (we note that a torsion-free R-module of rank one is the same thing as a non-zero R-submodule of Q). A will be said to be indecomposable, if A has no proper, non-zero, direct summands. We shall say that A has D.C.C., if A satisfies the descending chain condition for submodules. By dim R we shall mean the maximal length of a chain of prime ideals in R.


2007 ◽  
Vol 75 (3) ◽  
pp. 417-429 ◽  
Author(s):  
Ayman Badawi

Suppose that R is a commutative ring with 1 ≠ 0. In this paper, we introduce the concept of 2-absorbing ideal which is a generalisation of prime ideal. A nonzero proper ideal I of R is called a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. It is shown that a nonzero proper ideal I of R is a 2-absorbing ideal if and only if whenever I1I2I3 ⊆ I for some ideals I1,I2,I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I. It is shown that if I is a 2-absorbing ideal of R, then either Rad(I) is a prime ideal of R or Rad(I) = P1 ⋂ P2 where P1,P2 are the only distinct prime ideals of R that are minimal over I. Rings with the property that every nonzero proper ideal is a 2-absorbing ideal are characterised. All 2-absorbing ideals of valuation domains and Prüfer domains are completely described. It is shown that a Noetherian domain R is a Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R. If RM is Noetherian for each maximal ideal M of R, then it is shown that an integral domain R is an almost Dedekind domain if and only if a 2-absorbing ideal of R is either a maximal ideal of R or M2 for some maximal ideal M of R or M1M2 where M1,M2 are some maximal ideals of R.


1978 ◽  
Vol 30 (01) ◽  
pp. 95-101 ◽  
Author(s):  
L. J. Ratliff

All rings in this paper are assumed to be commutative with identity, and the undefined terminology is the same as that in [3]. In 1956, in an important paper [2], M. Nagata constructed an example which showed (among other things): (i) a maximal chain of prime ideals in an integral extension domain R' of a local domain (R, M) need not contract in R to a maximal chain of prime ideals; and, (ii) a prime ideal P in R' may be such that height P < height P ∩ R. In his example, Rf was the integral closure of R and had two maximal ideals. In this paper, by using Nagata's example, we show that there exists a finite local integral extension domain of D = R[X](M,X) for which (i) and (ii) hold (see (2.8.1) and (2.10)).


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Ashish Kumar Das ◽  
Deiborlang Nongsiang

We study some properties of a graph which is constructed from the equivalence classes of nonzero zero-divisors determined by the annihilator ideals of a poset. In particular, we demonstrate how this graph helps in identifying the annihilator prime ideals of a poset that satisfies the ascending chain condition for its proper annihilator ideals.


2014 ◽  
Vol 13 (08) ◽  
pp. 1450069
Author(s):  
Mahmood Behboodi ◽  
Francois Couchot ◽  
Seyed Hossein Shojaee

In this paper, several characterizations of semi-compact modules are given. Among other results, we study rings whose semi-compact modules are injective. We introduce the property Σ-semi-compact for modules and we characterize the modules satisfying this property. In particular, we show that a ring R is left Σ-semi-compact if and only if R satisfies the ascending (respectively, descending) chain condition on the left (respectively, right) annulets. Moreover, we prove that every flat left R-module is semi-compact if and only if R is left Σ-semi-compact. We also show that a ring R is left Noetherian if and only if every pure projective left R-module is semi-compact. Finally, we consider rings whose flat modules are finitely (singly) projective. For any commutative arithmetical ring R with quotient ring Q, we prove that every flat R-module is semi-compact if and only if every flat R-module is finitely (singly) projective if and only if Q is pure semisimple. A similar result is obtained for reduced commutative rings R with the space Min R compact. We also prove that every (ℵ0, 1)-flat left R-module is singly projective if R is left Σ-semi-compact, and the converse holds if Rℕ is an (ℵ0, 1)-flat left R-module.


2011 ◽  
Vol 10 (04) ◽  
pp. 727-739 ◽  
Author(s):  
M. BEHBOODI ◽  
Z. RAKEEI

Let R be a commutative ring, with 𝔸(R) its set of ideals with nonzero annihilator. In this paper and its sequel, we introduce and investigate the annihilating-ideal graph of R, denoted by 𝔸𝔾(R). It is the (undirected) graph with vertices 𝔸(R)* ≔ 𝔸(R)\{(0)}, and two distinct vertices I and J are adjacent if and only if IJ = (0). First, we study some finiteness conditions of 𝔸𝔾(R). For instance, it is shown that if R is not a domain, then 𝔸𝔾(R) has ascending chain condition (respectively, descending chain condition) on vertices if and only if R is Noetherian (respectively, Artinian). Moreover, the set of vertices of 𝔸𝔾(R) and the set of nonzero proper ideals of R have the same cardinality when R is either an Artinian or a decomposable ring. This yields for a ring R, 𝔸𝔾(R) has n vertices (n ≥ 1) if and only if R has only n nonzero proper ideals. Next, we study the connectivity of 𝔸𝔾(R). It is shown that 𝔸𝔾(R) is a connected graph and diam (𝔸𝔾)(R) ≤ 3 and if 𝔸𝔾(R) contains a cycle, then gr (𝔸𝔾(R)) ≤ 4. Also, rings R for which the graph 𝔸𝔾(R) is complete or star, are characterized, as well as rings R for which every vertex of 𝔸𝔾(R) is a prime (or maximal) ideal. In Part II we shall study the diameter and coloring of annihilating-ideal graphs.


1978 ◽  
Vol 43 (1) ◽  
pp. 92-112 ◽  
Author(s):  
Bruce I. Rose

AbstractWe say that a ring admits elimination of quantifiers, if in the language of rings, {0, 1, +, ·}, the complete theory of R admits elimination of quantifiers.Theorem 1. Let D be a division ring. Then D admits elimination of quantifiers if and only if D is an algebraically closed or finite field.A ring is prime if it satisfies the sentence: ∀x∀y∃z (x =0 ∨ y = 0∨ xzy ≠ 0).Theorem 2. If R is a prime ring with an infinite center and R admits elimination of quantifiers, then R is an algebraically closed field.Let be the class of finite fields. Let be the class of 2 × 2 matrix rings over a field with a prime number of elements. Let be the class of rings of the form GF(pn)⊕GF(pk) such that either n = k or g.c.d. (n, k) = 1. Let be the set of ordered pairs (f, Q) where Q is a finite set of primes and such that the characteristic of the ring f(q) is q. Finally, let be the class of rings of the form ⊕q ∈ Qf(q), for some (f, Q) in .Theorem 3. Let R be a finite ring without nonzero trivial ideals. Then R admits elimination of quantifiers if and only if R belongs to.Theorem 4. Let R be a ring with the descending chain condition of left ideals and without nonzero trivial ideals. Then R admits elimination of quantifiers if and only if R is an algebraically closed field or R belongs to.In contrast to Theorems 2 and 4, we haveTheorem 5. If R is an atomless p-ring, then R is finite, commutative, has no nonzero trivial ideals and admits elimination of quantifiers, but is not prime and does not have the descending chain condition.We also generalize Theorems 1, 2 and 4 to alternative rings.


2010 ◽  
Vol 09 (01) ◽  
pp. 43-72 ◽  
Author(s):  
PAUL-JEAN CAHEN ◽  
DAVID E. DOBBS ◽  
THOMAS G. LUCAS

A (commutative integral) domain R is said to be valuative if, for each nonzero element u in the quotient field of R, at least one of R ⊆ R[u] and R ⊆ R[u-1] has no proper intermediate rings. Such domains are closely related to valuation domains. If R is a valuative domain, then R has at most three maximal ideals, and at most two if R is not integrally closed. Also, if R is valuative, the set of nonmaximal prime ideals of R is linearly ordered, at most one maximal ideal of R does not contain each nonmaximal prime of R, and RP is a valuation domain for each prime P except for at most one maximal ideal. Any integrally closed valuative domain is a Bézout domain. Valuation domains are characterized as the quasilocal integrally closed valuative domains. Each one-dimensional Prüfer domain with at most three maximal ideals is valuative.


Sign in / Sign up

Export Citation Format

Share Document