scholarly journals GLOBAL SOLUTIONS OF THE EQUATION OF THE KIRCHHOFF ELASTIC ROD IN SPACE FORMS

2012 ◽  
Vol 88 (1) ◽  
pp. 70-80 ◽  
Author(s):  
SATOSHI KAWAKUBO

AbstractThe Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic rods, and is defined to be a solution of the Euler–Lagrange equations associated to the energy with the effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In particular, we give the existence and uniqueness of global solutions of the initial-value problem for the Euler–Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to that of infinite length.

2005 ◽  
Vol 15 (03) ◽  
pp. 871-890 ◽  
Author(s):  
G. DOMOKOS ◽  
T. J. HEALEY

We investigate mechanical spatial equilibria of slender elastic rods with intristic curvature. Our work is, to some extent, motivated by papers [Goriely & Tabor, 1998; Goriely & McMillen 2002]. There such rods of infinite length were recently studied to quantify the behavior of botanical filaments. In particular, an adequate explanation for the existence of helical perversions (the transition between helical segments of opposite handedness) is provided in [Goriely & Tabor, 1998]. However, this theory fails to describe multiple perversions, which can be observed in Nature. In contrast we formulate a two-point boundary-value problem describing rods of finite length with initial curvature and clamped ends. We identify trivial solutions as straight configurations and also k-covered circles, rigorously establish the existence of local bifurcations, and then compute global solutions via the Parallel Hybrid Algorithm [Domokos & Szeberényi, 2004] to find spatially complex equilibria characterized by multiple perversions. Based on computational results and the White–Fuller theorem [White, 1969; Fuller, 1971; Calugareanu, 1961] we describe a heuristic global picture of the bifurcation diagram, which can serve as an explanation for the evolution of physically observable tendril shapes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Dae Ho Jin

We study lightlike hypersurfacesMof an indefinite generalized Sasakian space formM-(f1,f2,f3), with indefinite trans-Sasakian structure of type(α,β), subject to the condition that the structure vector field ofM-is tangent toM. First we study the general theory for lightlike hypersurfaces of indefinite trans-Sasakian manifold of type(α,β). Next we prove several characterization theorems for lightlike hypersurfaces of an indefinite generalized Sasakian space form.


2003 ◽  
Vol 2003 (9) ◽  
pp. 539-547 ◽  
Author(s):  
Jeong-Sik Kim ◽  
Jaedong Choi

For submanifolds tangent to the structure vector field in cosymplectic space forms, we establish a basic inequality between the main intrinsic invariants of the submanifold, namely, its sectional curvature and scalar curvature on one side; and its main extrinsic invariant, namely, squared mean curvature on the other side. Some applications, including inequalities between the intrinsic invariantδMand the squared mean curvature, are given. The equality cases are also discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Minoru Tabata ◽  
Nobuoki Eshima

We study the initial-value problem for the replicator equation of theN-region Core-Periphery model in spatial economics. The main result shows that if workers are sufficiently agglomerated in a region at the initial time, then the initial-value problem has a unique global solution that converges to the equilibrium solution expressed by full agglomeration in that region.


1956 ◽  
Vol 23 (3) ◽  
pp. 367-372
Author(s):  
E. H. Lee ◽  
A. J. Wang

Abstract The problem of stress-wave propagation in a ring spring is considered. A ring spring consists of rings placed normal to the spring axis with alternate internal and external conical bearing surfaces. The friction between these surfaces causes a loading-unloading relation which is strongly irreversible, leading to marked energy absorption for oscillatory stressing. The attenuation of a pulse of stress is analyzed in detail as it is propagated down a spring of infinite length. The influence of certain spring characteristics is evaluated. Concentration of the absorption of the total input energy is found in the region of the impact end of the spring, and particular examples are presented.


Sign in / Sign up

Export Citation Format

Share Document