A GENERAL POSITION PROBLEM IN GRAPH THEORY

2018 ◽  
Vol 98 (2) ◽  
pp. 177-187 ◽  
Author(s):  
PAUL MANUEL ◽  
SANDI KLAVŽAR

The paper introduces a graph theory variation of the general position problem: given a graph $G$, determine a largest set $S$ of vertices of $G$ such that no three vertices of $S$ lie on a common geodesic. Such a set is a max-gp-set of $G$ and its size is the gp-number $\text{gp}(G)$ of $G$. Upper bounds on $\text{gp}(G)$ in terms of different isometric covers are given and used to determine the gp-number of several classes of graphs. Connections between general position sets and packings are investigated and used to give lower bounds on the gp-number. It is also proved that the general position problem is NP-complete.


2017 ◽  
Vol 15 (1) ◽  
pp. 1225-1235 ◽  
Author(s):  
Paul Manuel ◽  
Sandi Klavžar ◽  
Antony Xavier ◽  
Andrew Arokiaraj ◽  
Elizabeth Thomas

Abstract Geodesic covering problems form a widely researched topic in graph theory. One such problem is geodetic problem introduced by Harary et al. [Math. Comput. Modelling, 1993, 17, 89-95]. Here we introduce a variation of the geodetic problem and call it strong edge geodetic problem. We illustrate how this problem is evolved from social transport networks. It is shown that the strong edge geodetic problem is NP-complete. We derive lower and upper bounds for the strong edge geodetic number and demonstrate that these bounds are sharp. We produce exact solutions for trees, block graphs, silicate networks and glued binary trees without randomization.



2018 ◽  
Vol 163 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Paul Manuel ◽  
Sandi Klavžar


2021 ◽  
Author(s):  
Rajab Ali Borzooei ◽  
R. Almallah

Abstract Recently, in [3], we defined the concept of inverse fuzzy graph as a generalization of graph, which is able to answer some problems that graph theory and fuzzy graph theory can not explain. Now, in this paper we define the notion of inverse fuzzy multigraph and the concept of planarity on it by using the concepts of intersecting value and inverse fuzzy planarity value. Then we introduce some related theorems which determining upper bounds and lower bounds for the inverse fuzzy planarity value. After that we define the strong (weak) planarity of an inverse fuzzy multigraph and investigate related results. Finally, we give an application of inverse fuzzy multigraphs to decision-making how to reduce the cost of travel tours.



2018 ◽  
Vol 63 ◽  
pp. 875-921
Author(s):  
Radu Marinescu ◽  
Junkyu Lee ◽  
Rina Dechter ◽  
Alexander Ihler

Mixed inference such as the marginal MAP query (some variables marginalized by summation and others by maximization) is key to many prediction and decision models. It is known to be extremely hard; the problem is NPPP-complete while the decision problem for MAP is only NP-complete and the summation problem is #P-complete. Consequently, approximation anytime schemes are essential. In this paper, we show that the framework of heuristic AND/OR search, which exploits conditional independence in the graphical model, coupled with variational-based mini-bucket heuristics can be extended to this task and yield powerful state-of-the-art schemes. Specifically, we explore the complementary properties of best-first search for reducing the number of conditional sums and providing time-improving upper bounds, with depth-first search for rapidly generating and improving solutions and lower bounds. We show empirically that a class of solvers that interleaves depth-first with best-first schemes emerges as the most competitive anytime scheme.



2011 ◽  
Vol 20 (4) ◽  
pp. 617-621 ◽  
Author(s):  
ABBAS MEHRABIAN

We consider a variant of the Cops and Robbers game where the robber can movetedges at a time, and show that in this variant, the cop number of ad-regular graph with girth larger than 2t+2 is Ω(dt). By the known upper bounds on the order of cages, this implies that the cop number of a connectedn-vertex graph can be as large as Ω(n2/3) ift≥ 2, and Ω(n4/5) ift≥ 4. This improves the Ω($n^{\frac{t-3}{t-2}}$) lower bound of Frieze, Krivelevich and Loh (Variations on cops and robbers,J. Graph Theory, to appear) when 2 ≤t≤ 6. We also conjecture a general upper boundO(nt/t+1) for the cop number in this variant, generalizing Meyniel's conjecture.



2021 ◽  
Vol 40 (6) ◽  
Author(s):  
Sandi Klavžar ◽  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael G. Yero


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.



2008 ◽  
Vol 45 (2) ◽  
pp. 498-512 ◽  
Author(s):  
Joel C. Miller

We consider an infectious disease spreading along the edges of a network which may have significant clustering. The individuals in the population have heterogeneous infectiousness and/or susceptibility. We define the out-transmissibility of a node to be the marginal probability that it would infect a randomly chosen neighbor given its infectiousness and the distribution of susceptibility. For a given distribution of out-transmissibility, we find the conditions which give the upper (or lower) bounds on the size and probability of an epidemic, under weak assumptions on the transmission properties, but very general assumptions on the network. We find similar bounds for a given distribution of in-transmissibility (the marginal probability of being infected by a neighbor). We also find conditions giving global upper bounds on the size and probability. The distributions leading to these bounds are network independent. In the special case of networks with high girth (locally tree-like), we are able to prove stronger results. In general, the probability and size of epidemics are maximal when the population is homogeneous and minimal when the variance of in- or out-transmissibility is maximal.



2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.



Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon ◽  
Nicole Lemire

AbstractWe find upper bounds on the essential dimension of the moduli stack of parabolic vector bundles over a curve. When there is no parabolic structure, we improve the known upper bound on the essential dimension of the usual moduli stack. Our calculations also give lower bounds on the essential dimension of the semistable locus inside the moduli stack of vector bundles of rank r and degree d without parabolic structure.



Sign in / Sign up

Export Citation Format

Share Document