scholarly journals The Graph Theory General Position Problem on Some Interconnection Networks

2018 ◽  
Vol 163 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Paul Manuel ◽  
Sandi Klavžar

2018 ◽  
Vol 98 (2) ◽  
pp. 177-187 ◽  
Author(s):  
PAUL MANUEL ◽  
SANDI KLAVŽAR

The paper introduces a graph theory variation of the general position problem: given a graph $G$, determine a largest set $S$ of vertices of $G$ such that no three vertices of $S$ lie on a common geodesic. Such a set is a max-gp-set of $G$ and its size is the gp-number $\text{gp}(G)$ of $G$. Upper bounds on $\text{gp}(G)$ in terms of different isometric covers are given and used to determine the gp-number of several classes of graphs. Connections between general position sets and packings are investigated and used to give lower bounds on the gp-number. It is also proved that the general position problem is NP-complete.



2021 ◽  
Vol 40 (6) ◽  
Author(s):  
Sandi Klavžar ◽  
Dorota Kuziak ◽  
Iztok Peterin ◽  
Ismael G. Yero


1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.



2015 ◽  
Vol 93 (7) ◽  
pp. 730-739 ◽  
Author(s):  
Abdul Qudair Baig ◽  
Muhammad Imran ◽  
Haidar Ali

Topological indices are numerical parameters of a graph that characterize its topology and are usually graph invariant. In a QSAR/QSPR study, physicochemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study different interconnection networks and derive analytical closed results of the general Randić index (Rα(G)) for α = 1, [Formula: see text], –1, [Formula: see text] only, for dominating oxide network (DOX), dominating silicate network (DSL), and regular triangulene oxide network (RTOX). All of the studied interconnection networks in this paper are motivated by the molecular structure of a chemical compound, SiO4. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices and give closed formulae of these indices for these interconnection networks.



Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 810-819
Author(s):  
Juan Luis García Guirao ◽  
Muhammad Kamran Siddiqui ◽  
Asif Hussain

Abstract Networks play an important role in electrical and electronic engineering. It depends on what area of electrical and electronic engineering, for example there is a lot more abstract mathematics in communication theory and signal processing and networking etc. Networks involve nodes communicating with each other. Graph theory has found a considerable use in this area of research. A topological index is a real number associated with chemical constitution purporting for correlation of chemical networks with various physical properties, chemical reactivity. The concept of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index and Zagreb polynomials was established in chemical graph theory based on vertex degrees. In this paper, we extend this study to interconnection networks and derive analytical closed results of hyper Zagreb index, first multiple Zagreb index, second multiple Zagreb index, Zagreb polynomials and redefined Zagreb indices for block shift network (BSN − 1) and (BSN − 2), hierarchical hypercube (HHC − 1) and (HHC − 2).



Author(s):  
Lih-Hsing Hsu ◽  
Cheng-Kuan Lin


Author(s):  
Modjtaba Ghorbani ◽  
Sandi Klavžar ◽  
Hamid Reza Maimani ◽  
Mostafa Momeni ◽  
Farhad Rahimi Mahid ◽  
...  




2019 ◽  
Vol 17 (1) ◽  
pp. 1126-1135 ◽  
Author(s):  
Sandi Klavžar ◽  
Ismael G. Yero

Abstract The general position number gp(G) of a connected graph G is the cardinality of a largest set S of vertices such that no three pairwise distinct vertices from S lie on a common geodesic. It is proved that gp(G) ≥ ω(GSR), where GSR is the strong resolving graph of G, and ω(GSR) is its clique number. That the bound is sharp is demonstrated with numerous constructions including for instance direct products of complete graphs and different families of strong products, of generalized lexicographic products, and of rooted product graphs. For the strong product it is proved that gp(G ⊠ H) ≥ gp(G)gp(H), and asked whether the equality holds for arbitrary connected graphs G and H. It is proved that the answer is in particular positive for strong products with a complete factor, for strong products of complete bipartite graphs, and for certain strong cylinders.



2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Andrej Taranenko

Graph Theory International audience Fibonacci and Lucas cubes are induced subgraphs of hypercubes obtained by excluding certain binary strings from the vertex set. They appear as models for interconnection networks, as well as in chemistry. We derive a characterization of Lucas cubes that is based on a peripheral expansion of a unique convex subgraph of an appropriate Fibonacci cube. This serves as the foundation for a recognition algorithm of Lucas cubes that runs in linear time.



Sign in / Sign up

Export Citation Format

Share Document