ON AN INTEGRAL OF -BESSEL FUNCTIONS AND ITS APPLICATION TO MAHLER MEASURE

Author(s):  
GEORGE ANTON ◽  
JESSEN A. MALATHU ◽  
SHELBY STINSON ◽  
J. S. Friedman

Abstract Cogdell et al. [‘Evaluating the Mahler measure of linear forms via Kronecker limit formulas on complex projective space’, Trans. Amer. Math. Soc. (2021), to appear] developed infinite series representations for the logarithmic Mahler measure of a complex linear form with four or more variables. We establish the case of three variables by bounding an integral with integrand involving the random walk probability density $a\int _0^\infty tJ_0(at) \prod _{m=0}^2 J_0(r_m t)\,dt$ , where $J_0$ is the order-zero Bessel function of the first kind and a and $r_m$ are positive real numbers. To facilitate our proof we develop an alternative description of the integral’s asymptotic behaviour at its known points of divergence. As a computational aid for numerical experiments, an algorithm to calculate these series is presented in the appendix.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Hamasalh ◽  
Yuming Chu

First, we consider a new Simpson’s identity. This identity investigates our main results that consist of some integral inequalities of Simpson’s type for the s –convex functions. From our main results, we obtain some special cases which are discussed in detail. Finally, some applications on the Bessel functions, special means of distinct positive real numbers, and error estimation about Simpson quadrature formula are presented to support our theoretical results.


2018 ◽  
Vol 7 (1) ◽  
pp. 77-83
Author(s):  
Rajendra Prasad Regmi

There are various methods of finding the square roots of positive real number. This paper deals with finding the principle square root of positive real numbers by using Lagrange’s and Newton’s interpolation method. The interpolation method is the process of finding the values of unknown quantity (y) between two known quantities.


1985 ◽  
Vol 50 (1) ◽  
pp. 110-122
Author(s):  
Howard Becker

For any A ⊂ R, the Banach game B(A) is the following infinite game on reals: Players I and II alternately play positive real numbers a1; a2, a3, a4,… such that for n > 1, an < an−1. Player I wins iff ai exists and is in A.This type of game was introduced by Banach in 1935 in the Scottish Book [15], Problem 43. The (rather vague) problem which Banach posed was to characterize those sets A for which I (II) has a winning strategy in B(A). (There are three parts to Problem 43. In the first, Mazur defined a game G**(A) for every set A ⊂ R and conjectured that II has a winning strategy in G**(A) iff A is meager and I has a winning strategy in G**(A) iff A is comeager in some neighborhood; this conjecture was proved by Banach. Presumably Banach had this result in mind when he asked the question about B(A), and hoped for a similar type of characterization.) Incidentally, Problem 43 of the Scottish Book appears to be the first time infinite games of any sort were studied by mathematicians.This paper will not provide the reader with any answer to Banach's question. I know of no nontrivial way to characterize when player I (or II) wins, and I suspect there is none. This paper is concerned with a different (also rather vague) question: For which sets A is the Banach game B(A) determined? To say that B(A) is determined means, of course, that one of the players has a winning strategy for B(A).


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Dağistan Simsek ◽  
Bilal Demir ◽  
Cengiz Cinar

We study the behavior of the solutions of the following system of difference equationsxn+1=max⁡{A/xn,yn/xn},yn+1=max⁡{A/yn,xn/yn}where the constantAand the initial conditions are positive real numbers.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


2014 ◽  
Vol 33 (2) ◽  
pp. 59-67
Author(s):  
Pankaj Kumar ◽  
S. S. Bhatia ◽  
Vijay Kumar

In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda=(\lambda_{n})$ and $\mu = (\mu_{n})$  such that each tending to zero, also $\lambda_{n+1}\leq \lambda_{n}+1, \lambda_{1}=1,$ and $\mu_{n+1}\leq \mu_{n}+1, \mu_{1}=1.$ We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.


2014 ◽  
Vol 11 (01) ◽  
pp. 39-49 ◽  
Author(s):  
Bin Wei

Let f be a holomorphic cusp form of weight k for SL(2, ℤ) with Fourier coefficients λf(n). We study the sum ∑n>0λf(n)ϕ(n/X)e(αn), where [Formula: see text]. It is proved that the sum is rapidly decaying for α close to a rational number a/q where q2 < X1-ε. The main techniques used in this paper include Dirichlet's rational approximation of real numbers, a Voronoi summation formula for SL(2, ℤ) and the asymptotic expansion for Bessel functions.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350010
Author(s):  
HORST ALZER

Let α and β be real numbers. We prove that the functional inequality [Formula: see text] holds for all positive real numbers x and y if and only if [Formula: see text] Here, γ denotes Euler's constant.


Sign in / Sign up

Export Citation Format

Share Document