Clonal turnover of MACE-carrying peach-potato aphids (Myzus persicae (Sulzer), Homoptera: Aphididae) colonizing Scotland

2007 ◽  
Vol 98 (2) ◽  
pp. 115-124 ◽  
Author(s):  
L. Kasprowicz ◽  
G. Malloch ◽  
S. Foster ◽  
J. Pickup ◽  
J. Zhan ◽  
...  

AbstractPeach-potato aphids, Myzus persicae (Sulzer), collected in Scotland in the years 1995 and 2002–2004 were characterized using four microsatellite loci and three insecticide resistance mechanisms. From 868 samples, 14 multilocus genotypes were defined (designated clones A–N). Five of these (denoted A, B, H, M and N) carried modified acetylcholinesterase (MACE) resistance, the most recent resistance mechanism to have evolved in M. persicae. The current paper shows that the continued presence of MACE aphids is due to turnover, as clones A and B were replaced in field samples by clones H, M and N in later seasons. Thus, insecticide-resistant populations in Scotland can be attributed to multiple waves of rapid clone colonisations and not to the continued presence of stable resistant clones or mutation or sexual recombination in local populations. The MACE clones carried varying levels of the other insecticide resistance mechanisms, kdr and esterase. The presence of these mechanisms could alter the clones success in the field depending on insecticide spraying (positive selection) and resistance fitness costs (negative selection).

2021 ◽  
Author(s):  
Taiza Andrade Braga ◽  
Aline Cordeiro Loureiro ◽  
José Bento Pereira Lima ◽  
Ademir J Martins

Abstract Background: Although there is a vast literature concerning insecticide resistance (IR) in Plasmodium vectors from African and Asian continents, similar studies with Neotropical anophelines are scares. Herein we evaluated the IR profile of Anopheles albitarsis s.s. of a laboratory colony and a natural population collected around a rice plantation field. The laboratory colony is original from a collection performed in this same region more than two decades ago. Methods: We collected An. albitarsis females while resting after blood feeding, around rice field plantations in Massaranduba, SC, Brazil. These females laid their eggs in the laboratory, and the larvae were raised in parallel with our lab colony. To be sure about the field samples’ taxonomic status, we amplified and sequenced the mitochondrial COI gene of a sampling of field captured mosquitoes. We performed a simplified knockdown test with larvae exposed to permethrin and deltamethrin and submitted adult females to a WHO like tube test with the pyrethroids permethrin, deltamethrin, and etofenprox, in addition to the organophosphate malathion. A segment of the voltage-gated sodium channel gene (NaV) was amplified and cloned. Based on the observed sequences, we developed a TaqMan genotyping assay for the variation L1014F and calculated the genotypic and allelic frequencies concerning this SNP in the field population.Results: The COI analyses confirmed the taxonomic status of An. albitarsis s.s in laboratory and field samples. The field population was resistant to pyrethroids but not to malathion. We observed the substitutions L1019R, F1020S, and the classical kdr L1014F in the NaV gene. This classical kdr allele was present under low frequencies in the overall field population (2%), although more frequent in pyrethroid-resistant insects.Conclusions: The An. albitarsis s.s. population from Massaranduba was resistant to pyrethroids, likely due to selection pressure exerted by agrochemical pesticides. We registered the classical kdr mutation in a Brazilian Anopheles species for the first time. Further investigations are necessary to disclose additional resistance mechanisms.


2003 ◽  
Vol 93 (4) ◽  
pp. 289-297 ◽  
Author(s):  
T. Guillemaud ◽  
A. Brun ◽  
N. Anthony ◽  
M.H. Sauge ◽  
R. Boll ◽  
...  

AbstractIntensive chemical treatments have led to the development of a number of insecticide resistance mechanisms in the peach–potato aphid Myzus persicae (Sulzer). Some of these mechanisms are known to be associated with negative pleiotropic effects (resistance costs). Molecular and biochemical methods were used to determine the genotypes or phenotypes associated with four insecticide resistance mechanisms in single aphids from sexually-reproducing populations in southern France. The mechanisms considered were E4 and FE4 carboxylesterase overproduction, modified acetycholinesterase, and kdr and rdl resistance-associated mutations. A new method for determining individual kdr genotypes is presented. Almost all resistant individuals overproduced FE4 carboxylesterase, whereas modified acetylcholinesterase was rare. Both the kdr and rdl resistance mutations were present at high frequencies in French sexually-reproducing populations. The frequencies of insecticide resistance genes were compared before and after sexual reproduction in one peach orchard at Avignon to evaluate the potential impact of selection on the persistence of resistance alleles in the over-wintering phase. The frequencies of the kdr and rdl mutations varied significantly between autumn and spring sampling periods. The frequency of the kdr mutation increased, probably due to pyrethroid treatments at the end of the winter. Conversely, the frequency of the rdl mutation decreased significantly during winter, probably because of a fitness cost associated with this mutation.


2015 ◽  
Vol 72 (4) ◽  
pp. 671-683 ◽  
Author(s):  
Costas Ch Voudouris ◽  
Amalia N Kati ◽  
Eldem Sadikoglou ◽  
Martin Williamson ◽  
Panagiotis J Skouras ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e36366 ◽  
Author(s):  
Andrea X. Silva ◽  
Georg Jander ◽  
Horacio Samaniego ◽  
John S Ramsey ◽  
Christian C. Figueroa

2020 ◽  
Vol 5 (1) ◽  
pp. 785-791
Author(s):  
Yuliani Yuliani ◽  
Safri Ismayana ◽  
Rani Maharani ◽  
Fitri Widiantini ◽  
Danar Dono

AbstractThe uncontrolled and excessive use of insecticides on Spodoptera exigua can cause resistance. The aim of this study is to test resistance of S. exigua to chlorpyrifos and determine the possible mechanism of resistance to S. exigua. The resistance assay was carried out on chlorpyrifos by determining the level of resistance by the comparison of LC50 between the field samples and the standard samples. The resistivity of S. exigua was correlated with the activity of acetylcholinesterase (AChE), esterase, and glutathione S-transferase (GST) enzymes. The samples of S. exigua were also tested for their sensitivity to neem oil insecticides. The results showed that S. exigua samples from Brebes and Cipanas had a resistance ratio (RR) of 5.50 and 3.26, respectively. The results of the present study indicate that the insensitivity of the AChE and the high activity of the GST play a significant role in the mechanism of S. exigua resistance to chlorpyrifos. However, the esterase has fewer roles in the S. exigua resistance mechanism for both samples. In addition, the results of neem oil insecticides test showed that S. exigua from Brebes and Cipanas samples is sensitive to the insecticide with the RR value less than 1; therefore, this biopesticide has the opportunity to manage resistant pests. A novel mechanism for insecticide resistance by insect was proposed.


2000 ◽  
Vol 19 (8-10) ◽  
pp. 873-879 ◽  
Author(s):  
S.P Foster ◽  
I Denholm ◽  
A.L Devonshire

Sign in / Sign up

Export Citation Format

Share Document