Field-simulator studies of insecticide resistance to dimethylcarbamates and pyrethroids conferred by metabolic- and target site-based mechanisms in peach-potato aphids,Myzus persicae (Hemiptera: Aphididae)

2002 ◽  
Vol 58 (8) ◽  
pp. 811-816 ◽  
Author(s):  
Stephen P Foster ◽  
Ian Denholm ◽  
Alan L Devonshire

2000 ◽  
Vol 19 (8-10) ◽  
pp. 873-879 ◽  
Author(s):  
S.P Foster ◽  
I Denholm ◽  
A.L Devonshire


1988 ◽  
Vol 251 (1) ◽  
pp. 309-312 ◽  
Author(s):  
L M Field ◽  
A L Devonshire ◽  
B G Forde

cDNA clones for the esterase (E4) responsible for broad insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) were isolated and used to study the molecular basis of resistance. Increased esterase synthesis by resistant aphids was found to be associated with amplification of the structural gene for the esterase (E4 or its closely related variant, FE4), the degree of amplification being correlated with the activity of the esterase and the level of resistance. Hybridization of the cDNA clones to genomic Southern blots showed that only some of the esterase-related restriction fragments are amplified. Qualitative differences between restriction patterns in different clones of resistant aphids correlated with the presence or absence of a specific chromosome translocation and with production of E4 or FE4.



2022 ◽  
Author(s):  
Amen Hlaoui ◽  
Olga Chiesa ◽  
Christian C. Figueroa ◽  
Rebha Souissi ◽  
Emanuele Mazzoni ◽  
...  


2007 ◽  
Vol 98 (2) ◽  
pp. 115-124 ◽  
Author(s):  
L. Kasprowicz ◽  
G. Malloch ◽  
S. Foster ◽  
J. Pickup ◽  
J. Zhan ◽  
...  

AbstractPeach-potato aphids, Myzus persicae (Sulzer), collected in Scotland in the years 1995 and 2002–2004 were characterized using four microsatellite loci and three insecticide resistance mechanisms. From 868 samples, 14 multilocus genotypes were defined (designated clones A–N). Five of these (denoted A, B, H, M and N) carried modified acetylcholinesterase (MACE) resistance, the most recent resistance mechanism to have evolved in M. persicae. The current paper shows that the continued presence of MACE aphids is due to turnover, as clones A and B were replaced in field samples by clones H, M and N in later seasons. Thus, insecticide-resistant populations in Scotland can be attributed to multiple waves of rapid clone colonisations and not to the continued presence of stable resistant clones or mutation or sexual recombination in local populations. The MACE clones carried varying levels of the other insecticide resistance mechanisms, kdr and esterase. The presence of these mechanisms could alter the clones success in the field depending on insecticide spraying (positive selection) and resistance fitness costs (negative selection).



1977 ◽  
Vol 167 (3) ◽  
pp. 675-683 ◽  
Author(s):  
Alan L. Devonshire

Carboxylesterases from different strains of Myzus persicae were examined to try to understand their contribution to insecticide resistance. Preliminary evidence that they are involved comes from the good correlation between the degree of resistance and the carboxylesterase and paraoxon-degrading activity in aphid homogenates. Furthermore the carboxylesterase associated with resistance could not be separated from the insecticide-degrading enzyme by electrophoresis or ion-exchange chromatography. Homogenates of resistant aphids hydrolysed paraoxon 60 times faster than did those of susceptible aphids, yet the purified enzymes from both sources had identical catalytic-centre activities towards this substrate and also towards naphth-1-yl acetate, the latter being hydrolysed by both 2×106 times faster than paraoxon. These observations provide evidence that the enzyme from both sources is identical, and that one enzyme hydrolyses both substrates. This was confirmed by relating the rate of paraoxon hydrolysis to the rate at which paraoxon-inhibited carboxylesterase re-activated. Both had the same first-order rate constant (0.01min−1), showing clearly that the hydrolysis of both substrates is brought about by the same enzyme. Its Km for naphth-1-yl acetate was 0.131mm, and for paraoxon 75pm. The latter very small value could not be measured directly, but was calculated from substrate-competition studies coupled with measurements of re-activation of the diethyl phosphorylated enzyme. Since the purified enzymes from resistant and susceptible aphids had the same catalytic-centre activity, the 60-fold difference between strains must be caused by different amounts of the same enzyme resulting from mutations of the regulator gene(s) rather than of the structural gene.



2019 ◽  
Author(s):  
Walter Fabricio Silva Martins ◽  
Craig Stephen Wilding ◽  
Alison Taylor Isaacs ◽  
Emily Joy Rippon ◽  
Karine Megy ◽  
...  

ABSTRACTCulex quinquefasciatusplays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackleC. quinquefasciatusvectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, includingC. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistantC. quinquefasciatuswas explored to identify candidate genes associated with insecticide resistance. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1h exposure and 58.02% after 4h. Genotyping of the G119SAce-1target site mutation detected a highly significant association (p<0.0001; OR=25) between resistance andAce1-119S. However, synergist assays using the P450 inhibitor PBO or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450Cyp6z18showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb-resistance in UgandanC. quinquefasciatusis mediated by both target-site mechanisms and over-expression of detoxification enzymes.



Sign in / Sign up

Export Citation Format

Share Document