Predation by carabid beetles on the invasive slug Arion vulgaris in an agricultural semi-field experiment

2012 ◽  
Vol 103 (2) ◽  
pp. 225-232 ◽  
Author(s):  
E. Pianezzola ◽  
S. Roth ◽  
B.A. Hatteland

AbstractArion vulgaris Moquin-Tandon 1855 is one of the most important invasive species in Europe, affecting both biodiversity and agriculture. The species is spreading in many parts of Europe, inflicting severe damage to horticultural plants and cultivated crops partly due to a lack of satisfactory and effective management solutions. Molluscicides have traditionally been used to manage slug densities, although the effects are variable and some have severe side-effects on other biota. Thus, there is a need to explore potential alternatives such as biological control. The nematode Phasmarhabditis hermaphrodita is the only biological agent that has been applied commercially so far. However, other biological control agents such as carabid beetles have also been found to be promising. In addition, some carabid species have been shown to feed on A. vulgaris in the field as well as in the laboratory. Two species in particular have been found to be important predators of A. vulgaris, and these species are also common in agricultural environments: Pterostichus melanarius and Carabus nemoralis. This study is the first to use semi-field experiments in a strawberry field, manipulating densities, to investigate how P. melanarius and C. nemoralis affect densities of A. vulgaris eggs and juveniles, respectively. Gut contents of C. nemoralis were analysed using multiplex PCR methods to detect DNA of juvenile slugs. Results show that both P. melanarius and C. nemoralis significantly affect densities of slug eggs and juvenile slugs under semi-field conditions and that C. nemoralis seems to prefer slugs smaller than one gram. Carabus nemoralis seems to be especially promising in reducing densities of A. vulgaris, and future studies should investigate the potential of using this species as a biological control agent.

Nematology ◽  
2020 ◽  
pp. 1-9
Author(s):  
Žiga Laznik ◽  
Ivana Majić ◽  
Stanislav Trdan ◽  
Antoinette P. Malan ◽  
Annika Pieterse ◽  
...  

Summary In the period from August to October 2018, 140 specimens of the Spanish slug, Arion vulgaris, were collected from Podbrezje, Slovenia. Slugs were dissected and examined for the presence of parasitic nematodes within the cadavers. Identification of the nematodes was conducted using morphological and molecular techniques and confirmed the presence of Phasmarhabditis papillosa. This is the first record of P. papillosa from the mollusc host, A. vulgaris. Laboratory experiments aimed at testing the efficacy of P. papillosa against A. vulgaris were conducted using nematodes grown in vivo. Nematodes were applied at concentration rates of 50, 100 and 200 nematodes slug−1, respectively. Three weeks following treatment, the mortality of slugs was confirmed in all treatments (50 nematodes slug−1, 37.4 ± 2.7%; 100 nematodes slug−1, 48.4 ± 2.7%; 200 nematodes slug−1, 50.6 ± 2.7%). However, the pathogenesis of P. papillosa was observed first in the treatments with the lowest nematode dose at 4 days after treatments, while a decrease in the feeding behaviour of slugs was noted first in the treatments with the highest nematode dose. Future opportunities for the potential use of P. papillosa as a biological control agent against slugs are discussed. This is the first report of P. papillosa from Slovenia, and of its virulence against A. vulgaris.


1992 ◽  
Vol 40 (2) ◽  
pp. 163 ◽  
Author(s):  
PA Horne

The distributions and life histories of two species of carabid beetles, Notonomus gravis and Notonomus philippi, are compared. N. gravis inhabits the western grassland plains of Victoria and N. philippi inhabits woodland in the Otway Ranges and areas east of Melbourne. Adults of both species show peak activity in summer after emergence, with larval development from autumn to spring. The development of N. philippi occurs approximately one month earlier than that of N. gravis. Both species readily accept larval Lepidoptera as food, are nocturnal and are the dominant carabids in their respective habitats. N. gravis has potential as a biological control agent, and the carabid communities may be used as environmental indicators.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Nehalem C. Breiter ◽  
Timothy R. Seastedt

Toadflax invasion into natural areas has prompted interest in weed management via biological control. The most promising biological control agent currently available for the control of Dalmatian toadflax is Mecinus janthinus, a stem-boring weevil that has been shown to significantly reduce toadflax populations. Some land managers, however, are reluctant to release approved weed biological control agents based on concerns about possible nontarget impacts. Few postrelease examinations of biocontrol impact and host specificity have been performed, despite the call for such information. This study examined the host specificity of Mecinus janthinus, postrelease, in relation to Colorado sites to provide information to managers about its relative safety as a weed biological control agent. This study employed three components: (1) greenhouse choice and no-choice experiments; (2) no-choice caged field experiments; and (3) release-site evaluation of nontarget use of native plant species where this weevil has been released and has established. Both greenhouse and field experiments failed to demonstrate nontarget use of native plant species by M. janthinus in the region where it was studied, even in no-choice starvation tests. We found no evidence of nontarget herbivory on native plants growing at toadflax sites where M. janthinus was well established. These results support the continued use of M. janthinus as a low-risk biological control agent for the management of toadflax in the Rocky Mountain Front Range.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Ting Wang ◽  
Ping Zhang ◽  
Chenyang Ma ◽  
Muhammad Yasir Ali ◽  
Guizhen Gao ◽  
...  

Walnut aphids are major pests of walnut production with few commercially available natural enemies. We conducted laboratory and field experiments to evaluate the potential of Orius sauteri Poppius (Anthocoridae), a predatory bug, as a biological control agent against two walnut aphid species: the dusky-veined aphid (Panaphis juglandis Goeze) and the walnut aphid (Chromaphis juglandicola Kaltenbach). Both species co-occur on walnut trees; P. juglandis is distributed on the upper surface (adaxial) of leaves while C. juglandicola is found on the lower surface (abaxial) of leaves. Based on functional response experiments, O sauteri had a strong capacity for consuming both aphid species. Biocontrol efficacy of O. sauteri for each species in the laboratory and field experiments was high, 77% for P. juglandis and 80% for C. juglandicola, regardless if one or two predators being present. However, biocontrol efficacy declined 15–25% for C. juglandicola and 20–50% for P. juglandis when both aphid species were present on the same leaf. The efficacy of O. sauteri under (semi)-field conditions gave similar findings based on the percentage reduction of aphids and change in population growth rates of aphids. The reduced biocontrol efficacy of the predatory bug against mixed species populations of aphids can be explained by competition between the aphid species and differences in their preferred location on leaves. Our experiments showed that O. sauteri is a promising biocontrol agent, but biocontrol efficacy may decline when both aphid species are present on walnut trees. This should be considered in the commercial release of O. sauteri in walnut orchards to promote economic and environmental benefits of walnuts production.


2007 ◽  
Vol 97 (3) ◽  
pp. 281-290 ◽  
Author(s):  
P.R. Grundy

AbstractHelicoverpa spp. and mirids, Creontiades spp., have been difficult to control biologically in cotton due to their unpredictable temporal abundance combined with a cropping environment often made hostile by frequent usage of broad spectrum insecticides. To address this problem, a range of new generation insecticides registered for use in cotton were tested for compatibility with the assassin bug, Pristhesancus plagipennis (Walker), a potential biological control agent for Helicoverpa spp. and Creontiades spp. Indoxacarb, pyriproxifen, buprofezin, spinosad and fipronil were found to be of low to moderate toxicity on P. plagipennis whilst emamectin benzoate, abamectin, diafenthiuron, imidacloprid and omethaote were moderate to highly toxic. Inundative releases of P. plagipennis integrated with insecticides identified as being of low toxicity were then tested and compared with treatments of P. plagipennis and the compatible insecticides used alone, conventionally sprayed usage practice and an untreated control during two field experiments in cotton. The biological control provided by P. plagipennis nymphs when combined with compatible insecticides provided significant (P<0.001) reductions in Helicoverpa and Creontiades spp. on cotton and provided equivalent yields to conventionally sprayed cotton with half of the synthetic insecticide input. Despite this, the utilization of P. plagipennis in cotton as part of an integrated pest management programme remains unlikely due to high inundative release costs relative to other control technologies such as insecticides and transgenic (Bt) cotton varieties.


1983 ◽  
Vol 73 (2) ◽  
pp. 185-194 ◽  
Author(s):  
J. O. A. Onyeka

AbstractThe natural predators of Culex pipiens L. and C. torrentium Mart, in artificial containers and ponds were studied in southern England, using serological techniques. The antisera were from rabbits immunised by injections of saline extracts of the species of Culex into the inguinal lymph nodes and made relatively more specific by absorption. The gut contents or whole individuals of 1098 potential predators were smeared on to filter paper and tested. The most important predators in the ponds were Odonata nymphs while those of artificial containers were larval Dytiscidae. Diptera and Araneae preyed on emerging adults. The length of time a mosquito meal remained detectable in the gut of predators varied from a minimum of 8 h for the newt Triturus vulgaris to 24 h for the zygopteran Ischnura elegans (van der Linden). The results of laboratory tests indicated that the anisopteran Sympetrum striolatum (Charp.) was potentially more important as a biological control agent for larval culicines in ponds than the zygopteran Coenagrion puella (L.).


HortScience ◽  
1994 ◽  
Vol 29 (6) ◽  
pp. 659-662 ◽  
Author(s):  
B. Jack Johnson

Xanthomonas campestris pv. poannua has potential as a biological control agent for perennial ryegrass (Lolium perenne L.), and it is being evaluated as a commercial bioherbicide. Field experiments were conducted on dormant `Tifway' bermudagrass [Cynodon transvaalensis Burtt-Davy × C. dactylon (L.) Pers.] and `Tifway' bermudagrass overseeded with perennial ryegrass to determine the effects of two isolates of X. campestris pv. poannua on annual bluegrass (Poa annua L.) control. Annual bluegrass control was 82% on 27 Apr. 1992 after isolate MB 218 was applied to dormant bermudagrass at 109 cfu/ml in three applications on 11 and 28 Feb. and 12 Mar. When isolate MB 245 was applied at the same rate and dates, it controlled only 60% of the annual bluegrass. The response from isolate MB 245 at the same rate and number of applications on 28 Apr. 1993 was similar to that in Apr. 1992, with 64% control on dormant turf and 52% control on overseeded turf. There was no significant advantage in annual bluegrass control when isolate MB 245 was applied at 109 cfu/ml in more than three applications during the fall and winter, compared to three applications on 15 Feb. and 1 and 11 Mar. when ratings were made on 28 Apr. 1993. The control of annual bluegrass in late Apr. 1992 and 1993 from X. campestris applied in three applications (11 and 28 Feb. and 12 Mar. 1992 and 15 Feb. and 1 and 11 Mar. 1993) at 109 cfu/ml was greater than when l08 cfu/ml was applied on the same dates.


Sign in / Sign up

Export Citation Format

Share Document