Gene cloning and difference analysis of vitellogenin in Neoseiulus barkeri (Hughes)

2017 ◽  
Vol 108 (2) ◽  
pp. 141-149 ◽  
Author(s):  
L. Ding ◽  
F. Chen ◽  
R. Luo ◽  
Q. Pan ◽  
C. Wang ◽  
...  

AbstractNeoseiulus barkeri (HUGHES) is the natural enemy of spider mites, whiteflies and thrips. Screening for chemically-resistant predatory mites is a practical way to balance the contradiction between the pesticide using and biological control. In this study, the number of eggs laid by fenpropathrin-susceptible and resistant strains of N. barkeri was compared. Additionally, we cloned three N. barkeri vitellogenin (Vg) genes and used quantitative real-time polymerase chain reaction to quantify Vg expression in susceptible and resistant strains. The total number of eggs significantly increased in the fenpropathrin-resistant strain. The full-length cDNA cloning of three N. barkeri Vg genes (NbVg1, NbVg2 and NbVg3) revealed that the open reading frames of NbVg1, NbVg2 and NbVg3 were 5571, 5532 and 4728 bp, encoding 1856, 1843 and 1575 amino acids, respectively. The three N. barkeri Vg possessed the Vitellogenin-N domain (or lipoprotein N-terminal domain (LPD_N)), von Willebrand factor type D domain (VWD) and the domain with unknown function 1943 (DUF1943). The NbVg1 and NbVg2 expression levels were significantly higher in the resistant strain than in the susceptible strain, while the NbVg3 expression level was lower in the resistant strain. Thus, we speculate that the increased number of eggs laid by the fenpropathrin-resistant strain of N. barkeri may be a consequence of changes in Vg gene expression.

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 181
Author(s):  
Kun Qiao ◽  
Caiyun Jiang ◽  
Min Xu ◽  
Bei Chen ◽  
Wenhui Qiu ◽  
...  

The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.


2002 ◽  
Vol 81 (6) ◽  
pp. 380-386 ◽  
Author(s):  
H. Benchabane ◽  
L.-A. Lortie ◽  
N.D. Buckley ◽  
L. Trahan ◽  
M. Frenette

Xylitol is transported by Streptococcus mutans via a constitutive phosphoenolpyruvate:fructose phosphotransferase system (PTS) composed of a IIABC protein. Spontaneous xylitol-resistant strains are depleted in constitutive fructose-PTS activity, exhibit additional phenotypes, and are associated with the caries-preventive properties of xylitol. Polymerase chain-reactions and chromosome walking were used to clone the fxp operon that codes for the constitutive fructose/xylitol-PTS. The operon contained three open reading frames: fxpA, which coded for a putative regulatory protein of the deoxyribose repressor (DeoR) family, fxpB, which coded for a 1-phosphofructokinase, and fxpC, which coded for a IIABC protein of the fructose-PTS family. Northern blot analysis revealed that these genes were co-transcribed into a 4.4-kb mRNA even in the absence of fructose. Inactivation of the fxpC gene conferred resistance to xylitol, confirming its function. The fxp operon is also present in the genomes of other xylitol-sensitive streptococci, which could explain their sensitivity to xylitol.


2007 ◽  
Vol 98 (6) ◽  
pp. 909-915 ◽  
Author(s):  
Tetsuo Sugahara ◽  
Yzumi Yamashita ◽  
Masahito Shinomi ◽  
Yumiko Isobe ◽  
Banri Yamanoha ◽  
...  

2019 ◽  
Vol 661 ◽  
pp. 432-440 ◽  
Author(s):  
Bharti Thakur ◽  
Rajiv Yadav ◽  
Laurent Vallon ◽  
Roland Marmeisse ◽  
Laurence Fraissinet-Tachet ◽  
...  

1998 ◽  
Vol 80 (07) ◽  
pp. 32-36 ◽  
Author(s):  
G. R. Standen ◽  
C. Mazurier ◽  
C. Gaucher ◽  
A. Cumming ◽  
S. Keeney ◽  
...  

SummaryThe majority of patients with type 2N von Willebrand disease (VWD type 2N) have mutations in the region of the von Willebrand factor (VWF) gene encoding the factor VIII binding domain of VWF. Two mutations predominate among VWD type 2N patients: G2811A and C2696T, which respectively bring about the amino acid substitutions R854Q and R816W in VWF. Several other mutations have been found in VWD type 2N, including T2701A (H817Q) and G2823T (C858F). We have developed a genetic test which permits rapid screening for these four mutations in a single polymerase chain reaction (PCR). The test employs induced heteroduplex formation using two universal heteroduplex generators, one of which detects G2811A (R854Q) and G2823T (C858F), the other detects C2696T (R816W) and T2701A (H817Q). The allele frequency of the common G2811A (R854Q) mutation was investigated in the local (S. Wales) population by examination of 216 VWF genes (108 individuals) and was found to be 0.01. The heteroduplex-based test additionally detected a novel candidate type 2N mutation, C2810T (R854W) and a previously described polymorphism, G2805A (R852Q). The polymorphism showed allele frequencies of 0.92 (G nucleotide) and 0.08 (A nucleotide) in the population study.


2015 ◽  
Vol 43 (5) ◽  
pp. 795-800 ◽  
Author(s):  
Helen Troilo ◽  
Anne L. Barrett ◽  
Alexander P. Wohl ◽  
Thomas A. Jowitt ◽  
Richard F. Collins ◽  
...  

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Sign in / Sign up

Export Citation Format

Share Document