The influence of antibiotics on gut bacteria diversity associated with laboratory-reared Bactrocera dorsalis

2018 ◽  
Vol 109 (4) ◽  
pp. 500-509 ◽  
Author(s):  
Z. Bai ◽  
L. Liu ◽  
M.S. Noman ◽  
L. Zeng ◽  
M. Luo ◽  
...  

AbstractThe oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruit crops. Commensal bacteria play a very important part in the development, reproduction, and fitness of their host fruit fly. Uncovering the function of gut bacteria has become a worldwide quest. Using antibiotics to remove gut bacteria is a common method to investigate gut bacteria function. In the present study, three types of antibiotics (tetracycline, ampicillin, and streptomycin), each with four different concentrations, were used to test their effect on the gut bacteria diversity of laboratory-reared B. dorsalis. Combined antibiotics can change bacteria diversity, including cultivable and uncultivable bacteria, for both male and female adult flies. Secondary bacteria became the dominant population in female and male adult flies with the decrease in normally predominant bacteria. However, in larvae, only the predominant bacteria decreased, the bacteria diversity did not change a lot, likely because of the short acting time of the antibiotics. The bacteria diversity did not differ among fruit fly treatments with antibiotics of different concentrations. This study showed the dynamic changes of gut bacterial diversity in antibiotics-treated flies, and provides a foundation for research on the function of gut bacteria of the oriental fruit fly.

Author(s):  
Jiajin Fu ◽  
Lingyu Zeng ◽  
Linyu Zheng ◽  
Zhenzhen Bai ◽  
Zhihong Li ◽  
...  

Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.


Symbiosis ◽  
2017 ◽  
Vol 74 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Kanjana Khaeso ◽  
Awawing A. Andongma ◽  
Mazarin Akami ◽  
Biangkham Souliyanonh ◽  
Jian Zhu ◽  
...  

2016 ◽  
Vol 106 (6) ◽  
pp. 718-728 ◽  
Author(s):  
L.J. Liu ◽  
I. Martinez-Sañudo ◽  
L. Mazzon ◽  
C.S. Prabhakar ◽  
V. Girolami ◽  
...  

AbstractThe oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruits and vegetables. This pest is an invasive species and is currently distributed in some provinces of China. To recover the symbiotic bacteria of B. dorsalis from different invasion regions in China, we researched the bacterial diversity of this fruit fly among one laboratory colony (Guangdong, China) and 15 wild populations (14 sites in China and one site in Thailand) using DNA-based approaches. The construction of 16S rRNA gene libraries allowed the identification of 24 operational taxonomic units of associated bacteria at the 3% distance level, and these were affiliated with 3 phyla, 5 families, and 13 genera. The higher bacterial diversity was recovered in wild populations compared with the laboratory colony and in samples from early term invasion regions compared with samples from late term invasion regions. Moreover, Klebsiella pneumoniae and Providencia sp. were two of the most frequently recovered bacteria, present in flies collected from three different regions in China where B. dorsalis is invasive. This study for the first time provides a systemic investigation of the symbiotic bacteria of B. dorsalis from different invasion regions in China.


2011 ◽  
Vol 36 (5) ◽  
pp. 547-549
Author(s):  
Ying-gang DU ◽  
Hai-bo XIA ◽  
Jia-hua CHEN ◽  
Qing-e JI

2015 ◽  
Vol 24 (4) ◽  
pp. 467-479 ◽  
Author(s):  
L.-L. Wang ◽  
Y. Huang ◽  
X.-P. Lu ◽  
X.-Z. Jiang ◽  
G. Smagghe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document