peptidoglycan recognition protein
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 50)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Vol 869 (1) ◽  
pp. 012066
Author(s):  
L Huang ◽  
Q Yu ◽  
M Z Liu ◽  
J Q Liao ◽  
P F Li

Abstract Peptidoglycan recognition proteins (PGRPs) function as the pattern recognition receptor involved in antibacterial innate immunity. Evidence have showed that the molecular structure and function of PGRPs was conserved in vertebrate. However, as the pivotal species in the evolution of vertebrates, reptiles are believed to be the first vertebrates that have escaped from the aquatic environment and are able to adapt to a variety of different terrestrial lives, few studies about the PGRPs in reptiles has been reported. The Chinese soft-shelled turtle, Pelodiscus sinensis, is an ancient, secondary aquatic reptile with high economic value and nutritional value in Asia, which occupies a unique position in the animal kingdom and has important research value. In the latest research, a PGRP gene which was classified into the member of short-type PGRP family was characterized in Pelodiscus sinensis. This paper presented the latest findings on the molecular structure, expression pattern and function feature of PGRP-S from Pelodiscus sinensis, aiming at revealing that PGRP in vertebrates is evolutionarily conserved.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jielong Zhou ◽  
Peifu Wu ◽  
Zhongping Xiong ◽  
Naiyong Liu ◽  
Ning Zhao ◽  
...  

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aaron Ermel ◽  
Thankam Paul Thyvalikakath ◽  
Tatiana Foroud ◽  
Babar Khan ◽  
Mythily Srinivasan

Emerging concerns following the severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) pandemic are the long-term effects of coronavirus disease (COVID)-19. Dysgeusia in COVID-19 is supported by the abundant expression of the entry receptor, angiotensin-converting enzyme-2 (ACE2), in the oral mucosa. The invading virus perturbs the commensal biofilm and regulates the host responses that permit or suppress viral infection. We correlated the microbial recognition receptors and soluble ACE2 (sACE2) with the SARS-CoV2 measures in the saliva of COVID-19 patients. Data indicate that the toll-like receptor-4, peptidoglycan recognition protein, and sACE2 are elevated in COVID-19 saliva and correlate moderately with the viral load.


Author(s):  
Jiajin Fu ◽  
Lingyu Zeng ◽  
Linyu Zheng ◽  
Zhenzhen Bai ◽  
Zhihong Li ◽  
...  

Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tadeusz Zabolewicz ◽  
Paulina Puckowska ◽  
Paweł Brym ◽  
Kamil Oleński ◽  
Stanisław Kamiński

Abstract Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.


Author(s):  
De‐Lei Jiang ◽  
Jian‐Hao Ding ◽  
Zhi‐Xiang Liu ◽  
Zuo‐Ming Shao ◽  
Xin‐Hao Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document