scholarly journals Decomposition of the n-Dimensional Lattice-Graph into Hamiltonian Lines

1961 ◽  
Vol 12 (3) ◽  
pp. 123-131 ◽  
Author(s):  
C. ST.J. A. Nash-Williams

A graph G consists, for the purposes of this paper, of two disjoint sets V(G), E(G), whose elements are called vertices and edges respectively of G, together with a relationship whereby with each edge is associated an unordered pair of distinct vertices (called its end-vertices) which the edge is said to join, and whereby no two vertices are joined by more than one edge. An edge γ and vertex ξ are incident if ξ is an end-vertex of γ. A monomorphism [isomorphism] of a graph G into [onto] a graph H is a one-to-one function φ from V(G)∪E(G) into [onto] V(H)∪E(H) such that φ(V(G))⊂V(H), φ(E(G))⊂E(H) and an edge and vertex of G are incident in G if and only if their images under φ are incident in H. G and H are isomorphic (in symbols, G ≅ H) if there exists an isomorphism of G onto H. A subgraph of G is a graph H such that V(H) ⊂ V(G), E(H)⊂E(G) and an edge and vertex of H are incident in H if and only if they are incident in G; if V(H) = V(G), H is a spanning subgraph. A collection of graphs are edge-disjoint if no two of them have an edge in common. A decomposition of G is a set of edge-disjoint subgraphs of G which between them include all the edges and vertices of G. Ln is a graph whose vertices are the lattice points of n-dimensional Euclidean space, two vertices A and B being joined by an edge if and only if AB is of unit length (and therefore necessarily parallel to one of the co-ordinate axes). An endless Hamiltonian line of a graph G is a spanning subgraph of G which is isomorphic to L1. The object of this paper is to prove that Ln is decomposable into n endless Hamiltonian lines, a result previously established (1) for the case where n is a power of 2.

1969 ◽  
Vol 10 (1-2) ◽  
pp. 177-181 ◽  
Author(s):  
I. Danicic

Let K be an open convex domain in n-dimensional Euclidean space, symmetric about the origin O, and of finite Jordan content (volume) V. With K are associated n positive constants λ1, λ2,…,λn, the ‘successive minima of K’ and n linearly independent lattice points (points with integer coordinates) P1, P2, …, Pn (not necessarily unique) such that all lattice points in the body λ,K are linearly dependent on P1, P2, …, Pj-1. The points P1,…, Pj lie in λK provided that λ > λj. For j = 1 this means that λ1K contains no lattice point other than the origin. Obviously


1967 ◽  
Vol 15 (4) ◽  
pp. 285-289 ◽  
Author(s):  
E. F. Harding

1. An arbitrary (k– 1)-dimensional hyperplane disconnects K-dimensional Euclidean space Ek into two disjoint half-spaces. If a set of N points in general position in Ek is given [nok +1 in a (k–1)-plane, no k in a (k–2)-plane, and so on], then the set is partitione into two subsets by the hyperplane, a point belonging to one or the other subset according to which half-space it belongs to; for this purpose the half-spaces are considered as an unordered pair.


Let F ( X ) = F ( x 1 ,..., x n ) be a continuous non-negative function of X satisfying F ( tX ) = | t | F ( X ) for all real numbers t . The set K in n -dimensional Euclidean space R n defined by F ( X )⩽ 1 is called a star body. The author studies the lattices Λ in R n which are of minimum determinant and have no point except (0, ..., 0) inside K . He investigates how many points of such lattices lie on, or near to, the boundary of K , and considers in detail the case when K admits an infinite group of linear transformations into itself.


1976 ◽  
Vol 21 (4) ◽  
pp. 504-507 ◽  
Author(s):  
G. B. Elkington ◽  
J. Hammer

Let S be a closed bounded convex set in d-dimensional Euclidean space Ed. The width w(S) of S is the minimum distance between supporting hyperplanes of S, and L(S) is the number of integral lattice points in the interior of S.


1953 ◽  
Vol 49 (1) ◽  
pp. 156-157 ◽  
Author(s):  
D. B. Sawyer

Let R be a set of points in n-dimensional Euclidean space, and let Δ′(R) denote the lower bound of the determinants of non-homogeneous lattices which have no point in R. For Δ′(R) to be non-zero it is necessary, as Macbeath has shown (2), that R should have infinite volume.


Author(s):  
Tuan Anh Nguyen

AbstractIt is well-known that for a harmonic function u defined on the unit ball of the d-dimensional Euclidean space, d ≥ 2, the tangential and normal component of the gradient ∇u on the sphere are comparable by means of the Lp-norms, $p\in (1,\infty )$ p ∈ ( 1 , ∞ ) , up to multiplicative constants that depend only on d,p. This paper formulates and proves a discrete analogue of this result for discrete harmonic functions defined on a discrete box on the d-dimensional lattice with multiplicative constants that do not depend on the size of the box.


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
A. P. Stone

ABSTRACTGeneral shift operators for angular momentum are obtained and applied to find closed expressions for some Wigner coefficients occurring in a transformation between two equivalent representations of the four-dimensional rotation group. The transformation gives rise to analytical relations between hyperspherical harmonics in a four-dimensional Euclidean space.


Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


Sign in / Sign up

Export Citation Format

Share Document