scholarly journals A Matrix Form of Taylor's Theorem

1930 ◽  
Vol 2 (1) ◽  
pp. 33-54 ◽  
Author(s):  
H. W. Turnbull

The following pages continue a line of enquiry begun in a work On Differentiating a Matrix, (Proceedings of the Edinburgh Mathematical Society (2) 1 (1927), 111-128), which arose out of the Cayley operator , where xij is the ijth element of a square matrix [xij] of order n, and all n2 elements are taken as independent variables. The present work follows up the implications of Theorem III in the original, which stated thatwhere s (Xr) is the sum of the principal diagonal elements in the matrix Xr. This is now written ΩsXr = rXr – 1 and Ωs is taken as a fundamental operator analogous to ordinary differentiation, but applicable to matrices of any finite order n.

1964 ◽  
Vol 16 ◽  
pp. 473-478 ◽  
Author(s):  
Marvin Marcus ◽  
Adil Yaqub

In a recent interesting paper (3) H. Schwerdtfeger answered a question of W. R. Utz (4) on the structure of the real solutions A of A* = B, where A is skew-symmetric. (Utz and Schwerdtfeger call A* the "adjugate" of A ; A* is the n-square matrix whose (i, j) entry is (—1)i+j times the determinant of the (n — 1)-square matrix obtained by deleting row i and column j of A. The word "adjugate," however, is more usually applied to the matrix (AT)*, where AT denotes the transposed matrix of A ; cf. (1, 2).)The object of the present paper is to find all real n-square skew-symmetric solutions A to the equation


1932 ◽  
Vol 3 (2) ◽  
pp. 135-143 ◽  
Author(s):  
D. E. Rutherford

It is well known that the square matrix, of rank n−k + 1,which we shall denote by B where any element to the left of, or below the nonzero diagonal b1, k, b2, k + 1, . …, bn−k + 1, n is zero, can be resolved into factors Z−1DZ; where D is a square matrix of order n having the elements d1, k, d2, k + 1, . …, dn−k + 1, n all unity and all the other elements zero, and where Z is a non-singular matrix. In this paper we shall show in a particular case that this is so, and in the case in question we shall exhibit the matrix Z explicitly. Application of this is made to find the classical canonical form of a rational integral function of a square matrix A.


1966 ◽  
Vol 6 (4) ◽  
pp. 512-512
Author(s):  
I. D. Macdonald

Journal of the Australian Mathematical Society 4 (1964), 452–453The second paragraph should be deleted. The alleged commutator identity (3) is false and is certainly not due to Philip Hall. The correct form isas Dr. N. D. Gupta of Canberra has pointed out to me. According to Professor B. H. Neumann, this identity appeared in his (Professor Neumann's) thesis.Nevertheless the theorem is valid and the proof given is correct.


1977 ◽  
Vol 16 (3) ◽  
pp. 361-369
Author(s):  
M. Deza ◽  
Peter Eades

Necessary and sufficient conditions are given for a square matrix to te the matrix of distances of a circulant code. These conditions are used to obtain some inequalities for cyclic difference sets, and a necessary condition for the existence of circulant weighing matrices.


2016 ◽  
Vol 5 (2) ◽  
pp. 13-25
Author(s):  
Abdulkadir Hiziroglu ◽  
Umit Dursun Senbas

Having achieved an optimized customer portfolio has been of significant importance for companies. The literature provides several portfolio models and vast majority of them are in matrix form where several descriptors are used as dimensions of the matrix. These dimensions are characterized in ambiguity and require specific methods to tackle with it. The aim of this paper is to utilize fuzzy clustering in customer portfolio analysis to reduce this uncertainty and to make a comparison with a traditional customer portfolio model. A dataset of 130 customers of an automotive supplier in Turkey is used to perform the analyses and the results are compared with a conventional customer portfolio matrix. By making use of substantiality and balance of portfolio parameters, a qualitative and quantitative assessment of categorization generated by both approaches are evaluated. The use of fuzzy clustering gives more substantial clusters and a more balanced customer portfolio compared to the traditional matrix form of portfolio. Marketing managers can understand their overall customer portfolio better and reduce the effect of descriptive indicators via benefiting the fuzzy clustering results.


1962 ◽  
Vol 14 ◽  
pp. 553-564 ◽  
Author(s):  
Richard Block

If L is a Lie algebra with a representation Δ a→aΔ (a in L) (of finite degree), then by the trace form f = fΔ of Δ is meant the symmetric bilinear form on L obtained by taking the trace of the matrix products:Then f is invariant, that is, f is symmetric and f(ab, c) — f(a, bc) for all a, b, c in L. By the Δ-radical L⊥ = L⊥ of L is meant the set of a in L such that f(a, b) = 0 for all b in L. Then L⊥ is an ideal and f induces a bilinear form , called a quotient trace form, on L/L⊥. Thus an algebra has a quotient trace form if and only if there exists a Lie algebra L with a representation Δ such that


1997 ◽  
Vol 3 (S2) ◽  
pp. 957-958 ◽  
Author(s):  
P. Rez

Sharp peaks at threshold are a prominent feature of the L23 electron energy loss edges of both first and second row transition elements. Their intensity decreases monotonically as the atomic number increases across the period. It would therefore seem likely that the number of d electrons at a transition metal atom site and any variation with alloying could be measured from the L23 electron energy loss spectrum. Pearson measured the white line intensities for a series of both 3d and 4d transition metals. He normalised the white line intensity to the intensity in a continuum region 50eV wide starting 50eV above threshold. When this normalised intensity was plotted against the number of d electrons assumed for each elements he obtained a monotonie but non linear variation. The energy loss spectrum is given bywhich is a product of p<,the density of d states, and the matrix elements for transitions between 2p and d states.


1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sandang Guo ◽  
Yaqian Jing ◽  
Bingjun Li

PurposeThe purpose of this paper is to make multivariable gray model to be available for the application on interval gray number sequences directly, the matrix form of interval multivariable gray model (IMGM(1,m,k) model) is constructed to simulate and forecast original interval gray number sequences in this paper.Design/methodology/approachFirstly, the interval gray number is regarded as a three-dimensional column vector, and the parameters of multivariable gray model are expressed in matrix form. Based on the dynamic gray action and optimized background value, the interval multivariable gray model is constructed. Finally, two examples and comparisons are carried out to verify the effectiveness of IMGM(1,m,k) model.FindingsThe model is applied to simulate and predict expert value, foreign direct investment, automobile sales and steel output, respectively. The results show that the proposed model has better simulation and prediction performance than another two models.Practical implicationsDue to the uncertainty information and continuous changing of reality, the interval gray numbers are used to characterize full information of original data. And the IMGM(1,m,k) model not only considers the characteristics of parameters changing with time but also takes into account information on lower, middle and upper bounds of interval gray numbers simultaneously to make better suitable for practical application.Originality/valueThe main contribution of this paper is to propose a new interval multivariable gray model, which considers the interaction between the lower, middle and upper bounds of interval numbers and need not to transform interval gray number sequences into real sequences. According to combining different characteristics of each bound of interval gray numbers, the matrix form of interval multivariable gray model is established to simulate and forecast interval gray numbers. In addition, the model introduces dynamic gray action to reflect the changes of parameters over time. Instead of white equation of classic MGM(1,m), the difference equation is directly used to solve the simulated and predicted values.


Author(s):  
Sergey Petoukhov ◽  
Matthew He

Symmetries of the degeneracy of the vertebrate mitochondrial genetic code in the mosaic matrix form of its presentation are described in this chapter. The initial black-and-white genomatrix of this code is reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously. It is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar symmetrical and tetra-reproduction properties as well.


Sign in / Sign up

Export Citation Format

Share Document